First - your problem over performance is interesting and smacks of premature optimisation - as this answer will show, you're probably looking at a couple of milliseconds difference in performance between a for
loop and ToDictionary
.
Unless you are running this in a realtime system I can't see much of a problem.
On to the show - the following is a crude benchmark (only real-world timings are reliable) of three (and a half) different ways I can think of to build the dictionary. The first uses the for
loop, with the second doing the same but not using the array's Length
property (just for interest); the third and fourth use ToDictionary
; one uses a Select
and one uses a counter variable (a hybrid):
[TestMethod]
public void SomeBenchmark()
{
List<double> forLoopTimes = new List<double>();
List<double> forLoop2Times = new List<double>();
List<double> toDictionaryTimes = new List<double>();
List<double> hybridTimes = new List<double>();
string[] array = Enumerable.Range(0, 5000).Select(i => i.ToString()).ToArray();
Dictionary<int, string> dictionary;
int runCount = 5000;
int arrayLen = array.Length;
while (runCount-- != 0)
{
Stopwatch sw = Stopwatch.StartNew();
dictionary = new Dictionary<int, string>();
for (int i = 0; i < array.Length; i++)
{
dictionary[i] = array[i];
}
sw.Stop();
forLoopTimes.Add(sw.Elapsed.TotalMilliseconds);
sw.Restart();
dictionary = new Dictionary<int, string>();
for (int i = 0; i < arrayLen; i++)
{ //same as before - but using arrayLen instead of property
dictionary[i] = array[i];
}
sw.Stop();
forLoop2Times.Add(sw.Elapsed.TotalMilliseconds);
sw.Restart();
dictionary = array.Select((s, i) => new { Key = i, Value = s }).ToDictionary(v => v.Key, v => v.Value);
sw.Stop();
toDictionaryTimes.Add(sw.Elapsed.TotalMilliseconds);
int counter = 0;
sw.Restart();
dictionary = array.ToDictionary(s => counter++, s => s);
sw.Stop();
hybridTimes.Add(sw.Elapsed.TotalMilliseconds);
}
Console.WriteLine("for loop average: {0} milliseconds", forLoopTimes.Average());
Console.WriteLine("for loop(2) average: {0} milliseconds", forLoop2Times.Average());
Console.WriteLine("ToDictionary average: {0} milliseconds", toDictionaryTimes.Average());
Console.WriteLine("Hybrid average: {0} milliseconds", hybridTimes.Average());
}
Results (Release build, and takes about 20 seconds to run on my Dell 2.4Ghz Workstation):
For loop average: 0.28880804 milliseconds
For loop(2) average: 0.2773845 milliseconds
ToDictionary average: 0.479094339999998 milliseconds
Hybrid average: 0.353655779999999 milliseconds
So for
loop is undeniably faster - by at least 22% of the closest ToDictionary
implementation. I've tried it with 100,000 elements and it gets up to about 30% then.
Note the second for
loop result - seems to suggest that bypassing the Length
property is a good idea. Indeed I've done 4 runs in a row and these are the results (including the first, from above):
For loop: 0.28880804, 0.28562478, 0.283770739999999, 0.287241679999999
For loop(2): 0.2773845, 0.27621306, 0.27869996, 0.27962916
ToDictionary: 0.479094339999998, 0.476417939999997, 0.476162219999997, 0.475776479999997
Hybrid: 0.353655779999999, 0.3583224, 0.352022739999998, 0.349865779999999
However I have seen the results flip for at least one benchmark result, too - demonstrating how largely pointless this kind of benchmarking can be. Realistically we should be generating a different array for each test, too, to avoid caching etc.
There is an alternative.
If the method you're calling accepts an IDictionary<int, string>
(note - the interface); and not a Dictionary<int, string>
you can create a simple wrapper type that implements the necessary members of the interface, thus sidestepping the need to project into a Dictionary at all; so long as only certain members are required. Here's an almost complete implementation:
public class FakeDictionary : IDictionary<int, string>
{
private readonly string[] _array;
public FakeDictionary(string[] array)
{
_array = array;
}
#region IDictionary<int,string> Members
public void Add(int key, string value)
{
throw new NotSupportedException();
}
public bool ContainsKey(int key)
{
return key >= 0 && key < _array.Length;
}
public ICollection<int> Keys
{
get { return Enumerable.Range(0, _array.Length).ToArray(); }
}
public bool Remove(int key)
{
throw new NotSupportedException();
}
public bool TryGetValue(int key, out string value)
{
value = null;
if (key >= 0 && key < _array.Length)
{
value = _array[key];
return true;
}
return false;
}
public ICollection<string> Values
{
get { return _array; }
}
public string this[int key]
{
get
{
try
{
return _array[key];
}
catch (ArgumentOutOfRangeException ex)
{
throw new KeyNotFoundException("Invalid key", ex);
}
}
set //note - can't be used to add items
{
try
{
_array[key] = value;
}
catch (ArgumentOutOfRangeException ex)
{
throw new KeyNotFoundException("Invalid key", ex);
}
}
}
#endregion
#region ICollection<KeyValuePair<int,string>> Members
public void Add(KeyValuePair<int, string> item)
{
throw new NotSupportedException();
}
public void Clear()
{
throw new NotSupportedException();
}
public bool Contains(KeyValuePair<int, string> item)
{
return ContainsKey(item.Key) && _array[item.Key].Equals(item.Value);
}
public void CopyTo(KeyValuePair<int, string>[] array, int arrayIndex)
{
//too much for an SO answer.
throw new NotImplementedException();
}
public int Count
{
get { return _array.Length; }
}
public bool IsReadOnly
{
//technically it's not - because we can modify individual elements -
//but at the collection-level it is
get { return true; }
}
public bool Remove(KeyValuePair<int, string> item)
{
throw new NotSupportedException();
}
#endregion
#region IEnumerable<KeyValuePair<int,string>> Members
public IEnumerator<KeyValuePair<int, string>> GetEnumerator()
{
throw new NotImplementedException();
}
#endregion
#region IEnumerable Members
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
#endregion
}