If you are going to be checking primality, you might as well pick an efficient algorithm. As one answer (cryptically) pointed out, all even numbers greater than 2 are not prime. Therefore, you can short-circuit the check for half the numbers, which doubles the speed to check any particular number:
function check_prime (x)
-- Negative numbers, 0 and 1 are not prime.
if x < 2 then
return false
end
-- Primality for even numbers is easy.
if x == 2 then
return 2
end
if x%2 == 0 then
return false
end
-- Since we have already considered the even numbers,
-- see if the odd numbers are factors.
for i = 3, math.sqrt(x), 2 do
if x%i == 0 then
return false
end
end
return x
end
There are all sorts of optimizations we could apply, but let's take a shot at doing this in a more Lua manner:
function sieve (x)
if x < 2 then
return false
end
-- Assume all numbers are prime until proven not-prime.
local prime = {}
prime[1] = false
for i = 2, x do
prime[i] = true
end
-- For each prime we find, mark all multiples as not-prime.
for i = 2, math.sqrt(x) do
if prime[i] then
for j = i*i, x, i do
prime[j] = false
end
end
end
return prime
end
To use the sieve function:
prime = sieve(number)
if prime[number] then
print("Your number is prime!")
else
print("Your number is not prime!")
end
In my tests, the sieve version is about 6 times faster than the previous algorithm for generating all the primes less than 1 million. (Your mileage may vary.) You can easily check the primality of all numbers less than number
at no extra cost. On the other hand, it uses more memory and if you really want check the primality of just one number, it's less efficient.