I am trying to get a rolling prediction of a dynamic timeseries in R (and then work out squared errors of the forecast). I based a lot of this code on this StackOverflow question, but I am very new to R so I am struggling quite a bit. Any help would be much appreciated.
require(zoo)
require(dynlm)
set.seed(12345)
#create variables
x<-rnorm(mean=3,sd=2,100)
y<-rep(NA,100)
y[1]<-x[1]
for(i in 2:100) y[i]=1+x[i-1]+0.5*y[i-1]+rnorm(1,0,0.5)
int<-1:100
dummydata<-data.frame(int=int,x=x,y=y)
zoodata<-as.zoo(dummydata)
prediction<-function(series)
{
mod<-dynlm(formula = y ~ L(y) + L(x), data = series) #get model
nextOb<-nrow(series)+1
#make forecast
predicted<-coef(mod)[1]+coef(mod)[2]*zoodata$y[nextOb-1]+coef(mod)[3]*zoodata$x[nextOb-1]
#strip timeseries information
attributes(predicted)<-NULL
return(predicted)
}
rolling<-rollapply(zoodata,width=40,FUN=prediction,by.column=FALSE)
This returns:
20 21 ..... 80
10.18676 10.18676 10.18676
Which has two problems I was not expecting:
- Runs from 20->80, not 40->100 as I would expect (as the width is 40)
- The forecasts it gives out are constant: 10.18676
What am I doing wrong? And is there an easier way to do the prediction than to write it all out? Thanks!