A small variation on this solution
ls <- split(final_9880, rep(0:9, each = 1000, length.out = 9880)) # edited to Roman's suggestion
for(i in 1:10) assign(paste("test",i,sep="_"), ls[[i]])
Your command for binding should work.
Edit
If you have many dataframes you can use a parse-eval combo. I use the package gsubfn
for readability.
library(gsubfn)
nms <- paste("test", 1:10, sep="_", collapse=",")
eval(fn$parse(text='do.call(rbind, list($nms))'))
How does this work? First I create a string containing the comma-separated list of the dataframes
> paste("test", 1:10, sep="_", collapse=",")
[1] "test_1,test_2,test_3,test_4,test_5,test_6,test_7,test_8,test_9,test_10"
Then I use this string to construct the list
list(test_1,test_2,test_3,test_4,test_5,test_6,test_7,test_8,test_9,test_10)
using parse
and eval
with string interpolation.
eval(fn$parse(text='list($nms)'))
String interpolation is implemented via the fn$
prefix of parse
, its effect is to intercept and substitute $nms
with the string contained in the variable nms
. Parsing and evaluating the string "list($mns)"
creates the list needed. In the solution the rbind
is included in the parse-eval combo.
EDIT 2
You can collect all variables with a certain pattern, put them in a list and bind them by rows.
do.call("rbind", sapply(ls(pattern = "test_"), get, simplify = FALSE))
ls
finds all variables with a pattern "test_"
sapply
retrieves all those variables and stores them in a list
do.call
flattens the list row-wise.