A good way to do this is to count with integer values (e.g., loop with i from 0 to 300 by 1) and scale the counter only when the float value is used (e.g., set f = i * .1). When you do this, the loop counter is always exact, so you get exactly the iterations you want, and there is only one floating-point rounding, which does not accumulate from iteration to iteration.
The loop counter is most commonly an integer type, so that addition is easily seen to be exact (until overflow is reached). However, the loop counter may also be a floating-point type, provided you are sure that the values and operations for it are exact. (The common 32-bit floating-point format represents integers exactly from -224 to +224. Outside that, it does not have the precision to represent integers exactly. It does not represent .1 exactly, so you cannot count with increments of .1. But you could count with increments of .5, .25, .375, or other small multiples of moderate powers of two, which are represented exactly.)