data is a matrix containing 2500 time series of a measurment. I need to average each time series over time, discarding data points that were recorded around a spike (in the interval tspike-dt*10... tspike+10*dt). The number of spiketimes is variable for each neuron and stored in a dictionary with 2500 entries. My current code iterates over neurons and spiketimes and sets the masked values to NaN. Then bottleneck.nanmean() is called. However this code is to slow in the current version, and I am wondering wheater there is a faster solution. thanks!
import bottleneck
import numpy as np
from numpy.random import rand, randint
t = 1
dt = 1e-4
N = 2500
dtbin = 10*dt
data = np.float32(ones((N, t/dt)))
times = np.arange(0,t,dt)
spiketimes = dict.fromkeys(np.arange(N))
for key in spiketimes:
spiketimes[key] = rand(randint(100))
means = np.empty(N)
for i in range(N):
spike_times = spiketimes[i]
datarow = data[i]
if len(spike_times) > 0:
for spike_time in spike_times:
start=max(spike_time-dtbin,0)
end=min(spike_time+dtbin,t)
idx = np.all([times>=start,times<=end],0)
datarow[idx] = np.NaN
means[i] = bottleneck.nanmean(datarow)