Many high-level languages support inheritance and interfaces, and for
someone new to the concepts, it's sometimes not clear which one to
choose. Although languages differ in their exact handling of
inheritance and interfaces, the basics are usually the same, so this
tip should be valid for most languages.
Inheritance means that we derive one class (the derived class) from
another class (the base class). The derived class is an extension of
the base class. It contains all the features (methods and data
members) of the base class, can extend it with new features, and can
reimplement virtual methods of the base class. Some languages, like
C++, support multiple inheritance, where a derived class can have
multiple base classes, but usually inheritance is restricted to a
single base class.
Interfaces can usually only define methods and no data members (but C#
for example allows data members in the form of properties within
interfaces), and a class can always implement multiple interfaces. An
interface contains only method definitions without implementations,
and a class that implements an interface supplies the implementation.
So, using inheritance, you write a base class with method
implementations, and when you derive a class from it, this class will
inherit everything from the base class, and is immediately able to use
its features. An interface on the other hand is just a contract of
method signatures, and a class that wants to implement an interface is
forced to supply the implementations for all methods of the interface.
So when do you use which? In some cases, the language already dictates
what you use: if you need your class to have multiple 'parents', you
cannot use inheritance in languages that don't support multiple
inheritance. And if you want to reuse a library object, you have to
use the fitting concept, depending on if that library object is a
class or an interface.
But which to use if you are free to choose? Basically, base classes
describe and implement common behavior of related types, while
interfaces describe functionality that unrelated types can implement.
Inheritance describes 'is a' relationships, interfaces describe
'behaves like' relationships. For example, say that you are writing a
flight simulator. Your basic entity, which you will for example store
in a list, will be 'Airplane'. Your concrete types will be 'Concorde'
and 'Phantom'. So how should you model the three types? Concorde and
Phantom are related, they both are airplanes and share data, like
'Weight' or 'MaxSpeed' and functionality, like 'Accelerate', so we can
model them with inheritance. 'Airplane' will be the base class with
common data and methods, and 'Concorde' and 'Phantom' will derive from
'Airplane'. We could say that both are specialized airplanes, which is
why it's often said that inheritance means specialization. Now assume
that we also add a class 'Pilot' to our program, and we want to give
the user the ability to save the game and load it later. So when he
saves the game, we need to save the state of all Aircrafts and the
state of all Pilots. And we want to do this in one function that takes
just a list of all saveable objects. So how do we model this? To
answer this, we must take a look at the different types we want to
save. Pilots and Airplanes. It's obvious that they are not related at
all. They share no common data and no common functionality. We can see
that writing a base class 'Saveable' and derive both Pilot and
Airplane from it would make little sense, since no code in Saveable
could be reused by Airplane or Pilot, since both have no common
properties. In this case, an interface is the best solution. We can
write an interface 'ISaveable' with a method Save(). Pilot could then
implement ISaveable.Save() by saving his name, while Airplane could
save its current speed and coordinates.
As you can see, a clear image of the relationship between classes
often makes the choice clear: Use inheritance for related types, where
each derived class 'is a' base class. Use interfaces for unrelated
types which have some common functionality.
Here are some more points to consider with inheritance and interfaces:
Interfaces are fixed. When you change an interface, you have to change every class implementing that interface. But when you change a
base class, every derived class will gain the new functionality, which
can both be good (if you make a bugfix in some base class method
implementation, a derived class using that method will gain the bugfix
without you needing to change it) or bad (if a change in the baseclass
introduces a new bug, all derived classes using the method will be
bugged too).
Interfaces are usually more flexible, since in most languages you can only derive from one class, but implement many interfaces
Interfaces help to protect internal classes: Assume class A has an internal object b of class B. When a method in A returns a pointer or
reference to b, the code that called this method now has access to the
whole object b, which can be dangerous if A only wants to expose
certain members of b. This problem can be solved if you create an
interface I with just the members which are safe to expose. When B
implements this interface, and your method in A returns b via an I
pointer or reference, the outside code can only do what you allow
through the interface.