I'm trying to use user defined kernel. I know that kernlab offer user defined kernel(custom kernel functions) in R. I used data spam including package kernlab. (number of variables=57 number of examples =4061)
I'm defined kernel's form,
kp=function(d,e){
as=v*d
bs=v*e
cs=as-bs
cs=as.matrix(cs)
exp(-(norm(cs,"F")^2)/2)
}
class(kp)="kernel"
It is the transformed kernel for gaussian kernel, where v
is the continuously changed values that are inverse of standard deviation vector about each variables, for example:
v=(0.1666667,........0.1666667)
The training set defined 60% of spam data (preserving the proportions of the different classes).
if data's type is spam, than data's type = 1 for train svm
m=ksvm(xtrain,ytrain,type="C-svc",kernel=kp,C=10)
But this step is not working. It's always waiting for a response.
So, I ask you this problem, why? Is it because the number of examples are too big? Is there any other R package that can train SVMs for user defined kernel?