The accepted answer is gorgeous and quickly understandable if you are familiar with tree recursion. Since elegance was sought, opening this long dormant thread seems somewhat unnecessary.
However, a simpler solution was asked for. Iterative algorithms sometimes seem simpler to me. Furthermore, performance was mentioned as an indicator of quality, and iterative processes are sometimes faster than recursive ones.
The following code is tail recursive and generates an iterative process. It requires a third of the amount of time to compute combinations of size 12 from a list of 24 elements.
let combinations size aList =
let rec pairHeadAndTail acc bList =
match bList with
| [] -> acc
| x::xs -> pairHeadAndTail (List.Cons ((x,xs),acc)) xs
let remainderAfter = aList |> pairHeadAndTail [] |> Map.ofList
let rec comboIter n acc =
match n with
| 0 -> acc
| _ ->
acc
|> List.fold (fun acc alreadyChosenElems ->
match alreadyChosenElems with
| [] -> aList //Nothing chosen yet, therefore everything remains.
| lastChoice::_ -> remainderAfter.[lastChoice]
|> List.fold (fun acc elem ->
List.Cons (List.Cons (elem,alreadyChosenElems),acc)
) acc
) []
|> comboIter (n-1)
comboIter size [[]]
The idea that permits an iterative process is to pre-compute a map of the last chosen element to a list of the remaining available elements. This map is stored in remainderAfter
.
The code is not concise, nor does it conform to lyrical meter and rhyme.