Really large arrays generally aren't a job for memory, more one for disk. 1015 array elements at 64 bits apiece is (I think) 8 petabytes. You can pick up 8G memory slices for about $15 at the moment so, even if your machine could handle that much memory or address space, you'd be outlaying about $15 million dollars.
In addition, with upcoming DDR4 being clocked up to about 4GT/s (giga-transfers), even if each transfer was a 64-bit value, it would still take about one million seconds just to initialise that array to zero. Do you really want to be waiting around for eleven and a half days before your code even starts doing anything useful?
And, even if you go the disk route, that's quite a bit. At (roughly) $50 per TB, you're still looking at $400,000 and you'll possibly have to provide your own software for managing those 8,000 disks somehow. And I'm not even going to contemplate figuring out how long it would take to initialise the array on disk.
You may want to think about rephrasing your question to indicate the actual problem rather than what you currently have, a proposed solution. It may be that you don't need that much storage at all.
For example, if you're talking about an array where many of the values are left at zero, a sparse array is one way to go.