I'm generating ~1million text files containing arrays of doubles, tab delimited (these are simulations for research). Example output below. Each million text files I expect to be ~5 TB, which is unacceptable. So I need to compress.
However, all my data analysis will be done in matlab. And every matlab script will need to access all million of these text files. I can't decompress the whole million using C++, then run the matlab scripts, because I lack the HD space. So my question is, are there some very simple, easy to implement algorithms or other ways of reducing my text file sizes so that I can write the compression in C++ and read it in matlab?
example text file
0.0220874 0.00297818 0.000285954 1.70E-05 1.52E-07
0.0542912 0.00880725 0.000892849 6.94E-05 4.51E-06
0.0848582 0.0159799 0.00185915 0.000136578 7.16E-06
0.100415 0.0220033 0.00288016 0.000250445 1.38E-05
0.101889 0.0250725 0.00353148 0.000297856 2.34E-05
0.0942061 0.0256 0.00393893 0.000387219 3.01E-05
0.0812377 0.0238492 0.00392418 0.000418365 4.09E-05
0.0645259 0.0206528 0.00372185 0.000419891 3.23E-05
0.0487525 0.017065 0.00313825 0.00037539 3.68E-05
If it matters.. the complete text files represent joint probability mass functions, so they sum to 1. And I need lossless compression.
UPDATE Here is an IDIOTS guide to writing binary in C++ and reading it Matlab, with some very basic explanation along the way.
C++ code to write a small array to a binary file.
#include <iostream>
using namespace std;
int main()
{
float writefloat;
const int rows=2;
const int cols=3;
float JPDF[rows][cols];
JPDF[0][0]=.19493;
JPDF[0][1]=.111593;
JPDF[0][2]=.78135;
JPDF[1][0]=.33333;
JPDF[1][1]=.151535;
JPDF[1][2]=.591355;
JPDF is an array of type float that I save 6 values to. It's a 2x3 array.
FILE * out_file;
out_file = fopen ( "test.bin" , "wb" );
To be honest, I don't quite get what the first line is doing. It seems to be making a pointer of type FILE named out_file. The second line fopen says make a new file for writing (the 'w' of the second parameter), and make it a binary file (the 'b' of the wb).
fwrite(&rows,sizeof(int),1,out_file);
fwrite(&cols,sizeof(int),1,out_file);
Here I encode the size of my array (# rows, # cols). Note that we fwrite the reference to the variables rows and cols, not the variables themselves (& is by ref). The second parameter tells it how many bytes to write. Since rows and cols are both ints, I use sizeof(int). The '1' says do this 1 time. I think. And out_file is our pointer to the file we're writing to.
for (int i=0; i<3; i++)
{
for (int j=0; j<2; j++)
{
writefloat=JPDF[j][i];
fwrite (&writefloat , sizeof(float), 1, out_file);
}
}
fclose (out_file);
return 0;
}
Now I'll iterate through my array and write each value in bytes to my file. The indexing is a little backwards looking in that I'm iterating down each column rather than across a column in the inner loop. We'll see why in a sec. Again, I'm writing the reference to writefloat, which takes on the value of the current array element in each iteration. Since each array element is a float, I'm using sizeof(float) here instead of sizeof(int).
Just to be incredibly, stupidly clear, here's a diagram of how I think of the file we've just created.
[4 bytes: rows][4 bytes: cols][4 bytes: JPDF[0][0]][4 bytes: JPDF[1][0]] ...
[4 bytes: JPDF[1][2]]
..where each chunk of bytes is written in binary (0s and 1s).
To interpret in MATLAB:
FID=fopen('test.bin');
sizes=fread(FID,2,'int')
FID sort of works like a pointer here. Secretly, it probably is a pointer. Then we use fread which operates very similarly to C++ fread. FID is our 'pointer' to our file. The 'int' tells the function how many bytes each chunk contains. So sizes=fread(FID,2,'int')
says 'open FID in binary, and read 2 chunks of size INT bytes, and return the 2 elements in vector form. Now, sizes(1)=rows, and sizes(2)=cols.
s=fread(FID,[sizes(1) sizes(2)],'float')
The next part wasn't completely clear to me originally, I thought I'd have to tell fread to skip the 'header' of my binary that contains row/col info. However, it secretly maintains a pointer to where you left off. So now I empty the rest of the binary file, using the fact that I know the dimensions of the array. Note, while the second parameter [M,N] is [rows,cols], fread reads in "column order", which is why we wrote the array data in column order.
The one * is that I think I can only use matlab code 'int' and 'float' if the architecture of the C++ program is concordant with matlab (e.g., both are 64-bit, or both are 32-bit). But I'm not sure about this.
The output is:
sizes =
2
3
s =
0.194930002093315 0.111593000590801 0.781350016593933
0.333330005407333 0.151535004377365 0.59135502576828