Any rational number that has a denominator that is not a power of 2 will lead to an infinite number of digits when represented as a binary. Here you have 8/5 and 7/5. Therefore there is no exact binary representation as a floating-point number (unless you have infinite memory).
The exact binary representation of 1.6 is 110011001100110011001100110011001100...
The exact binary representation of 1.4 is 101100110011001100110011001100110011...
Both values have an infinite number of digits (1100 is repeated endlessly).
float values have a precision of 24 bits. So the binary representation of any value will be rounded to 24 bits. If you round the given values to 24 bits you get:
1.6: 110011001100110011001101 (decimal 13421773) - rounded up
1.4: 101100110011001100110011 (decimal 11744051) - rounded down
Both values have an exponent of 0 (the first bit is 2^0 = 1, the second is 2^-1 = 0.5 etc.).
Since the first bit in a 24 bit value is 2^23 you can calculate the exact decimal values by dividing the 24 bit values (13421773 and 11744051) by two 23 times.
The values are: 1.60000002384185791015625 and 1.39999997615814208984375.
When using floating-point types you always have to consider that their precision is finite. Values that can be written exact as decimal values might be rounded up or down when represented as binaries. Casting to int does not respect that because it truncates the given values. You should always use something like Math.Round.
If you really need an exact representation of rational numbers you need a completely different approach. Since rational numbers are fractions you can use integers to represent them. Here is an example of how you can achieve that.
However, you can not write Rational x = (Rational)1.6 then. You have to write something like Rational x = new Rational(8, 5) (or new Rational(16, 10) etc.).