It is perhaps worth explaining what happened to produce the number 18446744073692774400. Technically speaking, the expressions you wrote trigger "undefined behavior" and so the compiler could have produced anything as the result; however, assuming int
is a 32-bit type, which it almost always is nowadays, you'll get the same "wrong" answer if you write
uint64_t x = (int) (255u*256u*256u*256u);
and that expression does not trigger undefined behavior. (The conversion from unsigned int
to int
involves implementation-defined behavior, but as nobody has produced a ones-complement or sign-and-magnitude CPU in many years, all implementations you are likely to encounter define it exactly the same way.) I have written the cast in C style because everything I'm saying here applies equally to C and C++.
First off, let's look at the multiplication. I'm writing the right hand side in hex because it's easier to see what's going on that way.
255u * 256u = 0x0000FF00u
255u * 256u * 256u = 0x00FF0000u
255u * 256u * 256u * 256u = 0xFF000000u (= 4278190080)
That last result, 0xFF000000u
, has the highest bit of a 32-bit number set. Casting that value to a signed 32-bit type therefore causes it to become negative as-if 232 had been subtracted from it (that's the implementation-defined operation I mentioned above).
(int) (255u*256u*256u*256u) = 0xFF000000 = -16777216
I write the hexadecimal number there, sans u
suffix, to emphasize that the bit pattern of the value does not change when you convert it to a signed type; it is only reinterpreted.
Now, when you assign -16777216 to a uint64_t
variable, it is back-converted to unsigned as-if by adding 264. (Unlike the unsigned-to-signed conversion, this semantic is prescribed by the standard.) This does change the bit pattern, setting all of the high 32 bits of the number to 1 instead of 0 as you had expected:
(uint64_t) (int) (255u*256u*256u*256u) = 0xFFFFFFFFFF000000u
And if you write 0xFFFFFFFFFF000000
in decimal, you get 18446744073692774400.
As a closing piece of advice, whenever you get an "impossible" integer from C or C++, try printing it out in hexadecimal; it's much easier to see oddities of twos-complement fixed-width arithmetic that way.