5

I am trying to implement local sequence alignment in Python using the Smith–Waterman algorithm.

Here's what I have so far. It gets as far as building the similarity matrix:

import sys, string
from numpy import *

f1=open(sys.argv[1], 'r')
seq1=f1.readline()
f1.close()
seq1=string.strip(seq1)

f2=open(sys.argv[2], 'r')
seq2=f2.readline()
f2.close()
seq2=string.strip(seq2)

a,b =len(seq1),len(seq2)

penalty=-1;
point=2;

#generation of matrix for local alignment
p=zeros((a+1,b+1))

# table calculation and matrix generation
for i in range(1,a+1):
    for j in range(1,b+1):
        vertical_score =p[i-1][j]+penalty;
        horizontal_score= p[i][j-1]+penalty;
        if seq1[i-1]==seq2[j-1]:
            diagonal_score =p[i-1][j-1]+point;
        else:
            diagonal_score = p[i-1][j-1]+penalty;
        p[i][j]=max(0,vertical_score,horizontal_score,diagonal_score);

print p

For example, with the two sequences:

agcacact
acacacta

my code outputs the similarity matrix:

[[  0.   0.   0.   0.   0.   0.   0.   0.   0.]
 [  0.   2.   1.   2.   1.   2.   1.   0.   2.]
 [  0.   1.   1.   1.   1.   1.   1.   0.   1.]
 [  0.   0.   3.   2.   3.   2.   3.   2.   1.]
 [  0.   2.   2.   5.   4.   5.   4.   3.   4.]
 [  0.   1.   4.   4.   7.   6.   7.   6.   5.]
 [  0.   2.   3.   6.   6.   9.   8.   7.   8.]
 [  0.   1.   4.   5.   8.   8.  11.  10.   9.]
 [  0.   0.   3.   4.   7.   7.  10.  13.  12.]]

Now I am stuck on the next step of the algorithm, the backtracking to construct the best alignment.

Wikipedia says,

To obtain the optimum local alignment, we start with the highest value in the matrix (i, j). Then, we go backwards to one of positions (i − 1, j), (i, j − 1), and (i − 1, j − 1) depending on the direction of movement used to construct the matrix. We keep the process until we reach a matrix cell with zero value, or the value in position (0, 0).

I am having trouble determining which position to backtrack to. What does Wikipedia mean by "depending on the direction of movement used to construct the matrix" mean and how would I implement this in Python?

Finally I did this

import sys, string
from numpy import*
import re

# read first sequence

fasta_sequence1=open(sys.argv[1], 'r')

seq1=""
for i in fasta_sequence1:
    if i.startswith(">"):
        pass
    else:
        seq1 = seq1 + i.strip()   
fasta_sequence1.close()

fasta_sequence2=open(sys.argv[2], 'r')

seq2 = ""
for i in fasta_sequence2:
    if i.startswith('>'):
        pass
    else:
        seq2 = seq2+ i.strip()
fasta_sequence2.close()

a,b =len(seq1),len(seq2)


penalty=-1;
point=2;

#generation of matrix for local alignment 

p=zeros((a+1,b+1))

#intialization of max score
max_score=0;
#pointer to store the traceback path

pointer=zeros((a+1,b+1))

# table calculation and matrix generation
for i in range(1,a+1):
    for j in range(1,b+1):
        vertical_score =p[i-1][j]+penalty;
        horizontal_score= p[i][j-1]+penalty;
        if seq1[i-1]==seq2[j-1]:
            diagonal_score =p[i-1][j-1]+point;
        else:
            diagonal_score = p[i-1][j-1]+penalty;

for i in range(1,a+1):
    for j in range(1,b+1):            
        p[i][j]=max(0,vertical_score,horizontal_score,diagonal_score);

for i in range(1,a+1):
    for j in range(1,b+1):
        if p[i][j]==0:
            pointer[i][j]=0; #0 means end of the path
        if p[i][j]==vertical_score:
            pointer[i][j]=1; #1 means trace up
        if p[i][j]==horizontal_score:
            pointer[i][j]=2; #2 means trace left
        if p[i][j]==diagonal_score:
            pointer[i][j]=3; #3 means trace diagonal
        if p[i][j]>=max_score:
            maximum_i=i;
            maximum_j=j;
            max_score=p[i][j];


#for i in range(1,a+1):
   # for j in range(1,b+1):
        #if p[i][j]>max_score:
            #max_score=p[i][j]

print max_score

# traceback of all the pointers 

align1,align2='',''; #initial sequences

i,j=max_i,max_j; #indices of path starting point

while pointer[i][j]!=0:
  if pointer[i][j]==3:
    align1=align1+seq1[i-1];
    align2=align2+seq2[j-1];
    i=i-1;
    j=j-1;
  elif pointer[i][j]==2:
    align1=align1+'-';
    align2=align2+seq2[j-1]
    j=j-1;
  elif pointer[i][j]==1:
    align1=align1+seq1[i-1];
    align2=align2+'-';
    i=i-1;



align1=align1[::-1]; #reverse sequence 1
align2=align2[::-1]; #reverse sequence 2

#output_file = open(sys.argv[3],"w")
#output_file.write(align1)

#output_file.write(align2)

print align1
print align2

But i think there could be a better and more efficient way of doing this

output_file = open(sys.argv[3],"w")
output_file.write(align1)
output_file.write(align2)

the result shows like

agcacacta-cacact

on the contraryc for :

print align1
print align2

shows correct output:

agcacact
a-cacact

How can i get the above output in the file writer . Thanks

Nodnin
  • 451
  • 2
  • 9
  • 21

1 Answers1

13

When you build the similarity matrix, you need to store not only the similarity score, but where that score came from. You currently have a line of code:

p[i][j]=max(0,vertical_score,horizontal_score,diagonal_score);

so here you need to remember not the just the maximum score, but which of these was the maximum. Then when you come to do the backtracking you will know which direction to go.

For example, you might try something like this:

import numpy

DELETION, INSERTION, MATCH = range(3)

def smith_waterman(seq1, seq2, insertion_penalty = -1, deletion_penalty = -1,
                   mismatch_penalty = -1, match_score = 2):
    """
    Find the optimum local sequence alignment for the sequences `seq1`
    and `seq2` using the Smith-Waterman algorithm. Optional keyword
    arguments give the gap-scoring scheme:

    `insertion_penalty` penalty for an insertion (default: -1)
    `deletion_penalty`  penalty for a deletion (default: -1)
    `mismatch_penalty`  penalty for a mismatch (default: -1)
    `match_score`       score for a match (default: 2)

    See <http://en.wikipedia.org/wiki/Smith-Waterman_algorithm>.

    >>> for s in smith_waterman('AGCAGACT', 'ACACACTA'): print s
    ... 
    AGCAGACT-
    A-CACACTA
    """
    m, n = len(seq1), len(seq2)

    # Construct the similarity matrix in p[i][j], and remember how
    # we constructed it -- insertion, deletion or (mis)match -- in
    # q[i][j].
    p = numpy.zeros((m + 1, n + 1))
    q = numpy.zeros((m + 1, n + 1))
    for i in range(1, m + 1):
        for j in range(1, n + 1):
            deletion = (p[i - 1][j] + deletion_penalty, DELETION)
            insertion = (p[i][j - 1] + insertion_penalty, INSERTION)
            if seq1[i - 1] == seq2[j - 1]:
                match = (p[i - 1][j - 1] + match_score, MATCH)
            else:
                match = (p[i - 1][j - 1] + mismatch_penalty, MATCH)
            p[i][j], q[i][j] = max((0, 0), deletion, insertion, match)

    # Yield the aligned sequences one character at a time in reverse
    # order.
    def backtrack():
        i, j = m, n
        while i > 0 or j > 0:
            assert i >= 0 and j >= 0
            if q[i][j] == MATCH:
                i -= 1
                j -= 1
                yield seq1[i], seq2[j]
            elif q[i][j] == INSERTION:
                j -= 1
                yield '-', seq2[j]
            elif q[i][j] == DELETION:
                i -= 1
                yield seq1[i], '-'
            else:
                assert(False)

    return [''.join(reversed(s)) for s in zip(*backtrack())]
Gareth Rees
  • 64,967
  • 9
  • 133
  • 163
  • how cani print the output in a file with with the strings one above the other . – Nodnin Oct 05 '12 at 06:28
  • 1
    Write a newline character to the file after the first string and before the second string. – Gareth Rees Oct 05 '12 at 11:22
  • As it is on a mismatch the 2 aligned strings may include different letters on the same position (when `MATCH` stems from a mismatch in constructing p) - correct ? Also `while p[i][j] != 0` might as well be `while q[i][j] != 0` – Mr_and_Mrs_D Jan 13 '13 at 15:34
  • 1
    @Mr_and_Mrs_D: Yes, a mismatch means that the two strings have different letters at the same position. I added a mismatch to the doctest example to illustrate this. Also, you're right to query the backtracking loop condition: it was wrong, and I've now fixed it. – Gareth Rees Jan 14 '13 at 12:50
  • My previous comment was wrong - deleted. What I meant to say however was that SW is a "local" alignment algorithm which means that : A) backtrack does not necessarily start at (m,n) and B) there must be a fourth value (typically 0 - hence my confusion) to signal that backtracking must stop. So one must keep the highest score (and its position) and start backtracking from it `while q[i][j] != STOP`. Still +1 for succinctness. – Mr_and_Mrs_D Jan 20 '13 at 17:02