Tweaking numbers so they "look random"
I agree with Phil H that humans are so good at finding patterns that they often think they see patterns even in "perfectly random" sequences of numbers (clustering illusion, apophenia, gambler's fallacy, etc).
Plots of true random positions generally have lots of clumps and points that "coincidentally" fall very close together, which looks pretty suspicious.
Artists often take completely randomly generated patterns and "nudge" them to make them appear "more random", even though that careful nudging actually makes the pattern less random (a), (b), (c), (d), etc.
Alternatively, a low-discrepancy sequence sometimes "looks better" than a true random sequence and is much faster to generate.
Fast random number generators
There are many "random number generators" across a whole spectrum from "extremely fast" to "relatively slow" and from "easy for even a human to see patterns" to "unlikely that unassisted humans could ever see any patterns" to "cryptographically secure and, after seeded with adequate amounts of entropy, as far as we can tell, indistinguishable from random to any attacker using less than all the energy produced by humanity for a month."
Non-cryptographic-strength random number generators that still give excellent output (unlikely that unassisted humans could ever see any patterns) include the Mersenne twister, multiply-with-carry, Lagged Fibonacci generator, Well equidistributed long-period linear, Xorshift, etc.
Cryptographic random number techniques that work with some browsers
I hear that Cryptocat and other JavaScript applications use the convenient window.crypto.getRandomValues()
or window.msCrypto.getRandomValues()
or SubtleCrypto.generateKey()
functions that are designed to generate cryptographic random numbers. Unfortunately, that function is not available in IE 11 and below.
Since web browsers use random numbers all the time (for every "https://" page they fetch), it's quite likely that these functions (where available) may run faster than most random number generators written in JavaScript -- even non-cryptographic algorithms.
Cryptographic random number techniques compatible with ancient and modern browsers
One way to generate true random numbers in JavaScript is to capture mouse events and add them into a pool of entropy, keeping track of some (hopefully conservative) estimate of the entropy added. Once the pool is "full" (estimates indicate that at least 128 bits of entropy have been added), use some cryptographically secure random number generator to generate random numbers from the pool -- typically by using a one-way hash so that a sequence of a few thousand output numbers are not enough to deduce the state of the entropy pool and hence predict the next output number.
One implementation: http://lightsecond.com/passphrase.html
Further reading