I have reports that perform some time consuming data calculations for each user in my database, and the result is 10 to 20 calculated new records for each user. To improve report responsiveness, a nightly job was created to run the calculations and dump the results to a snapshot table in the database. It only runs for active users.
So with 50k users, 30k of which are active, the job "updates" 300k to 600k records in the large snapshot table. The method it currently uses is it deletes all previous records for a given user, then inserts the new set. There is no PK on the table, only a business key is used to group the sets of data.
So my question is, when removing and adding up to 600k records every night, are there techniques to optimize the table to handle this? For instance, since the data can be recreated on demand, is there a way to disable logging for the table as these changes are made?
UPDATE:
One issue is I cannot do this in batch because the way the script works, it's examining one user at a time, so it looks at a user, deletes the previous 10-20 records, and inserts a new set of 10-20 records. It does this over and over. I am worried that the transaction log will run out of space or other performance issues could occur. I would like to configure the table to now worry about data preservation or other items that could slow it down. I cannot drop the indexes and all that because people are accessing the table concurrently to it being updated.