Ok, start with a little extension I got from this answer,
public static IEnumerable<IEnumerable<T>> Combinations<T>(
this IEnumerable<T> source,
int k)
{
if (k == 0)
{
return new[] { Enumerable.Empty<T>() };
}
return source.SelectMany((e, i) =>
source.Skip(i + 1).Combinations(k - 1)
.Select(c => (new[] { e }).Concat(c)));
}
this gives you a pretty efficient method to yield all the combinations with k
members, without repetition, from a given IEnumerable
. You could make good use of this in your implementation.
Bear in mind, if the IEnumerable
and k
are sufficiently large this could take some time, i.e. much longer than you have. So, I've modified your function to take a CancellationToken
.
private static IEnumerable<decimal> GetWinningValues(
IEnumerable<decimal> allValues,
int numberToGet,
decimal targetValue,
CancellationToken canceller)
{
IList<decimal> currentBest = null;
var currentBestGap = decimal.MaxValue;
var locker = new object();
allValues.Combinations(numberToGet)
.AsParallel()
.WithCancellation(canceller)
.TakeWhile(c => currentBestGap != decimal.Zero)
.ForAll(c =>
{
var gap = Math.Abs(c.Sum() - targetValue);
if (gap < currentBestGap)
{
lock (locker)
{
currentBestGap = gap;
currentBest = c.ToList();
}
}
}
return currentBest;
}
I've an idea that you could sort the initial list and quit iterating the combinations at a certain point, when the sum must exceed the target. After some consideration, its not trivial to identify that point and, the cost of checking may exceed the benefit. This benefit would have to be balanced agaist some function of the target value and mean of the set.
I still think further optimization is possible but I also think that this work has already been done and I'd just need to look it up in the right place.