I have an object from a library (numpy.ndarray), in which I've substituted the _iadd_ method for a custom one. If I call object._iadd_(x), it works as expected. However, object+=x seems to call the old (unsubstituted) method. I wanted to prevent overflows on numpy from occurring on specific cases, so I created a context manager for that. Here's the (still very crude) code:
class NumpyOverflowPreventer( object ):
inverse_operator= {'__iadd__':'__sub__', '__isub__':'__add__', '__imul__': '__div__', '__idiv__':'__mul__'}
def _operate(self, b, forward_operator):
assert type(b) in (int, float)
reverse_operator= NumpyOverflowPreventer.inverse_operator[forward_operator]
uro= getattr(self.upper_range, reverse_operator)
lro= getattr(self.lower_range, reverse_operator)
afo= self.originals[ forward_operator ]
overflows= self.matrix > uro( b )
underflows= self.matrix < lro( b )
afo( b )
self.matrix[overflows]= self.upper_range
self.matrix[underflows]= self.lower_range
def __init__(self, matrix):
m= matrix
assert m.dtype==np.uint8
self.matrix= m
self.lower_range= float(0)
self.upper_range= float(2**8-1)
def __enter__(self):
import functools
self.originals={}
for op in NumpyOverflowPreventer.inverse_operator.keys():
self.originals[ op ] = getattr( self.matrix, op )
setattr( self.matrix, op, functools.partial(self._operate, forward_operator=op))
def __exit__(self, type, value, tb):
for op in NumpyOverflowPreventer.inverse_operator.keys():
setattr( self.matrix, op, self.originals[ op ] )
running this:
a= np.matrix(255, dtype= np.uint8)
b= np.matrix(255, dtype= np.uint8)
with NumpyOverflowPreventer(a):
a+=1
with NumpyOverflowPreventer(b):
b.__iadd__(1)
print a,b
returns this:
[[0]] [[255]]