There are 2 cases.
Pure virtual destructor
This case is specifically treated by the standard.
12.4 Destructors [class.dtor]
9) A destructor can be declared virtual
(10.3) or pure virtual
(10.4); if any objects of that class or any
derived class are created in the program, the destructor shall be defined. If a class has a base class with a
virtual destructor, its destructor (whether user- or implicitly-declared) is virtual.
The case of the destructor is different because all destructors are called in an inheritance hierearchy (assuming correct deletion) in reverse order of construction, even if not explicitly. So the base class destructor is called when the object gets deleted - that's why it needs an implementation.
Pure virtual method
These differ from destructors in that they're not required to be implemented, nor do they need an implementation. The difference for the missing requirement is that when a Derived::foo()
gets called, it doesn't automatically call Base::foo()
(not that it could, since it can or can not be implemented).
Why you would want to implement a pure virtual
method depends on the case. I look at the pure specifier as a hint to the programmer, as opposed to related to the logic. It tells you - the programmer - that you should implement that method. It doesn't really matter if the base class has an implementation or not.
by specifiying = 0, for pure virtual functions, we are saying that the function cannot have any definition for the class where this pure virtual function is declared.
Not really. You're saying derived non-abstract classes have to override that function. This doesn't prevent you from implementing it yourself.