Here is my stab at it.
import numpy as np
from matplotlib.mlab import griddata
##Generate a random sparse grid
grid = np.random.random((6,6))*10
grid[grid>5] = np.nan
## Create Boolean array of missing values
mask = np.isfinite(grid)
## Get all of the finite values from the grid
values = grid[mask].flatten()
## Find indecies of finite values
index = np.where(mask==True)
x,y = index[0],index[1]
##Create regular grid of points
xi = np.arange(0,len(grid[0,:]),1)
yi = np.arange(0,len(grid[:,0]),1)
## Grid irregular points to regular grid using delaunay triangulation
ivals = griddata(x,y,values,xi,yi,interp='nn')
This is how I go about interpolating unevenly distributed points to a regular grid. I have not tried any other type of interpolation method(ie. linear).