"It is a very natural question to ask for standard errors of regression
coefficients or other estimated quantities. In principle such standard
errors can easily be calculated, e.g. using the bootstrap.
Still, this package deliberately does not provide them. The reason for
this is that standard errors are not very meaningful for strongly
biased estimates such as arise from penalized estimation methods.
Penalized estimation is a procedure that reduces the variance of
estimators by introducing substantial bias. The bias of each estimator
is therefore a major component of its mean squared error, whereas its
variance may contribute only a small part.
Unfortunately, in most applications of penalized regression it is
impossible to obtain a sufficiently precise estimate of the bias. Any
bootstrap-based calculations can only give an assessment of the
variance of the estimates. Reliable estimates of the bias are only
available if reliable unbiased estimates are available, which is
typically not the case in situations in which penalized estimates are
used.
Reporting a standard error of a penalized estimate therefore tells
only part of the story. It can give a mistaken impression of great
precision, completely ignoring the inaccuracy caused by the bias. It
is certainly a mistake to make confidence statements that are only
based on an assessment of the variance of the estimates, such as
bootstrap-based confidence intervals do."
Jelle Goeman, Ph.D. Leiden University, Author of the Penalized package in R.