A simple roll your own approach (based on the assumption that the pattern keeps the same length):
function hammingdistance(a,b)
local ta={a:byte(1,-1)}
local tb={b:byte(1,-1)}
local res = 0
for k=1,#a do
if ta[k]~=tb[k] then
res=res+1
end
end
print(a,b,res) -- debugging/demonstration print
return res
end
function fuz(s,pat)
local best_match=10000
local best_location
for k=1,#s-#pat+1 do
local cur_diff=hammingdistance(s:sub(k,k+#pat-1),pat)
if cur_diff < best_match then
best_location = k
best_match = cur_diff
end
end
local start,ending = math.max(1,best_location),math.min(best_location+#pat-1,#s)
return start,ending,s:sub(start,ending)
end
s=[[Hello, Universe! UnIvErSe]]
print(fuz(s,'universe'))
Disclaimer: not recommended, just for fun:
If you want a better syntax (and you don't mind messing with standard type's metatables) you could use this:
getmetatable('').__sub=hammingdistance
a='Hello'
b='hello'
print(a-b)
But note that a-b
does not equal b-a
this way.