I've created the following code that nests a for loop inside of a for loop in R. It is a simulation to calculate Power. I've read that R isn't great for doing for loops but I was wondering if there are any efficiencies I could apply to make this run a bit faster. I'm fairly new to R as well as programming of any sort. Right now the run times I'm seeing are:
m=10 I get .17 sec
m=100 I get 3.95 sec
m=1000 I get 246.26 sec
m=2000 I get 1003.55 sec
I was hoping to set the number of times to sample, m, upwards of 100K but I'm afraid to even set this at 10K
Here is the code:
m = 1000 # number of times we are going to take samples
popmean=120 # set population mean at 120
popvar=225 # set known/established population
variance at 225
newvar=144 # variance of new methodology
alpha=.01 # set alpha
teststatvect = matrix(nrow=m,ncol=1) # empty vector to populate with test statistics
power = matrix(nrow=200,ncol=1) # empty vector to populate with power
system.time( # not needed - using to gauge how long this takes
for (n in 1:length(power)) # begin for loop for different sample sizes
for(i in 1:m){ # begin for loop to take "m" samples
y=rnorm(n,popmean,sqrt(newvar)) # sample of size n with mean 120 and var=144
ts=sum((y-popmean)^2/popvar) # calculate test statistic for each sample
teststatvect[i]=ts # loop and populate the vector to hold test statistics
vecpvals=pchisq(teststatvect,n) # calculate the pval of each statistic
power[n]=length(which(vecpvals<=alpha))/length(vecpvals) # loop to populate power vector. Power is the proportion lessthan ot equal to alpha
}
}
)