for given x < 10^15
, quickly and accurately determine the maximum integer p
such that 2^p <= x
Here are some things I've tried:
First I tried this but it's not accurate for large numbers:
>>> from math import log
>>> x = 2**3
>>> x
8
>>> p = int(log(x, 2))
>>> 2**p == x
True
>>> x = 2**50
>>> p = int(log(x, 2))
>>> 2**p == x #not accurate for large numbers?
False
I could try something like:
p = 1
i = 1
while True:
if i * 2 > n:
break
i *= 2
p += 1
not_p = n - p
Which would take up to 50 operations if p was 50
I could pre-compute all the powers of 2 up until 2^50, and use binary search to find p. This would take around log(50) operations but seems a bit excessive and ugly?
I found this thread for C based solutions: Compute fast log base 2 ceiling
However It seems a bit ugly and I wasn't exactly sure how to convert it to python.