The majority of my programming experience has been with C++. Inspired by Bjarne Stroustrup's talk here, one of my favorite programming techniques is "type-rich" programming; the development of new robust data-types that will not only reduce the amount of code I have to write by wrapping functionality into the type (for example vector addition, instead of newVec.x = vec1.x + vec2.x; newVec.y = ... etc, we can just use newVec = vec1 + vec2) but will also reveal problems in your code at compile time through the strong type system.
A recent project I have undertaken in Python 2.7 requires integer values that have upper and lower bounds. My first instinct is to create a new data type (class) that will have all the same behavior as a normal number in python, but will always be within its (dynamic) boundary values.
class BoundInt:
def __init__(self, target = 0, low = 0, high = 1):
self.lowerLimit = low
self.upperLimit = high
self._value = target
self._balance()
def _balance(self):
if (self._value > self.upperLimit):
self._value = self.upperLimit
elif (self._value < self.lowerLimit):
self._value = self.lowerLimit
self._value = int(round(self._value))
def value(self):
self._balance()
return self._value
def set(self, target):
self._value = target
self._balance()
def __str__(self):
return str(self._value)
This is a good start, but it requires accessing the meat of these BoundInt types like so
x = BoundInt()
y = 4
x.set(y) #it would be nicer to do something like x = y
print y #prints "4"
print x #prints "1"
z = 2 + x.value() #again, it would be nicer to do z = 2 + x
print z #prints "3"
We can add a large number of python's "magic method" definitions to the class to add some more functionality:
def __add__(self, other):
return self._value + other
def __sub__(self, other):
return self._value - other
def __mul__(self, other):
return self._value * other
def __div__(self, other):
return self._value / other
def __pow__(self, power):
return self._value**power
def __radd__(self, other):
return self._value + other
#etc etc
Now the code is rapidly exploding in size, and there is a ton of repetition to what is being written, for very little return, this doesn't seem very pythonic at all.
Things get even more complicated when I start to want to construct BoundInt objects from normal python numbers (integers?), and other BoundInt objects
x = BoundInt()
y = BoundInt(x)
z = BoundInt(4)
Which, as far as I'm aware requires the use of rather large/ugly if/else type checking statements within the BoundInt() constructor, as python does not support (c style) overloading.
All of this feels terribly like trying to write c++ code in python, a cardinal sin if one of my favorite books, Code Complete 2, is taken seriously. I feel like I am swimming against the dynamic typing current, instead of letting it carry me forward.
I very much want to learn to code python 'pythonic-ally', what is the best way to approach this sort of problem domain? What are good resources to learn proper pythonic style?