A struct in C# is at its heart nothing more nor less than a bunch of variables stuck together with duct tape. If one wants each variable of a particular type to represent a bunch of independent but related variables (such as the coordinates of a point) stuck together with duct tape, it's often better to use an exposed-field struct than a class, regardless of whether "bunch" means two or twenty. Note that although Microsoft's struct-versus-class advice is fine for data types which encapsulate a single value, it should be considered inapplicable for types whose purpose is to encapsulate independent but related values. The greater the extent to which the variables are independent, the greater the advantages of using an exposed-field struct.
If one wishes to use a class to encapsulate a bunch of independent variables, there are two ways one can do it, neither of which is terribly convenient. One may use an immutable class, in which case any non-null storage location of that class type will encapsulate the values held by the instance identified thereby, and one storage location may be copied to another to make the new one encapsulate those same values. Unfortunately, changing one of the values encapsulated by a storage location will generally require constructing a new instance which is just like the old one except with that value changed. For example, if one has a variable pt
of type Immutable3dPoint
and one wished to increase pt.X
by one, one would have to do something like: pt = new Immutable3dPoint(pt.X+1, pt.Y, pt.Z);
Perhaps tolerable if the type only encapsulates three values, but pretty annoying if there very many.
The other class-based approach is to use a mutable class; this generally requires that one ensure that every storage location of the class type holds the only reference anywhere in the universe to an instance of that class. When a storage location is created, one must construct a new instance and store a reference there. If one wishes to copy the values from storage location P
to storage location Q
, to another, one must copy all the fields or properties from one instance to the other (perhaps by having the type implement a CopyFrom
method, and saying Q.CopyFrom(P);
. Note that if one instead says Q=P;
that may seem to work, but future attempts to modify P
will also modify Q
and vice versa. Mutable classes may work, and they can at times be efficient, but it's very easy to mess things up.
Exposed-field structures combine the convenient value-copy semantics of immutable classes with the convenient piecewise modifications allowed by mutable classes. Large structures are slower to copy than are references to immutable objects, but the cost of modifying part of an exposed-field structure depends only upon the extent of the modification, rather than upon the overall structure size. By contrast, the cost of changing one piece of data encapsulated in an immutable class type will be proportional to the total class size.