Say you want to dynamically allocate a 2-dimensional integer array of ROWS rows and COLS columns. Then you can first allocate a continuous chunk of ROWS * COLS integers and then manually split it into ROWS rows. Without syntactic sugar, this reads
int *mem = malloc(ROWS * COLS * sizeof(int));
int **A = malloc(ROWS * sizeof(int*));
for(int i = 0; i < ROWS; i++)
A[i] = mem + COLS*i;
// use A[i][j]
and can be done more efficiently by avoiding the multiplication,
int *mem = malloc(ROWS * COLS * sizeof(int));
int **A = malloc(ROWS * sizeof(int*));
A[0] = mem;
for(int i = 1; i < ROWS; i++)
A[i] = A[i-1] + COLS;
// use A[i][j]
Finally, one could give up the extra pointer altogether,
int **A = malloc(ROWS * sizeof(int*));
A[0] = malloc(ROWS * COLS * sizeof(int));
for(int i = 1; i < ROWS; i++)
A[i] = A[i-1] + COLS;
// use A[i][j]
but there's an important GOTCHA! You would have to be careful to first deallocate A[0] and then A,
free(A[0]);
free(A); // if this were done first, then A[0] would be invalidated
The same idea can be extended to 3- or higher-dimensional arrays, although the code will get messy.