int numSwaps(int arr[], int length) {
bool sorted = false;
int swaps = 0;
while(!sorted) {
int inversions = 0;
int t1pos,t2pos,t3pos,t4pos = 0;
for (int i = 1;i < length; ++i)
{
if(arr[i] < arr[i-1]){
if(inversions){
tie(t3pos,t4pos) = make_tuple(i-1, i);
}
else tie(t1pos, t2pos) = make_tuple(i-1, i);
inversions++;
}
if(inversions == 2)
break;
}
if(!inversions){
sorted = true;
}
else if(inversions == 1) {
swaps++;
int temp = arr[t2pos];
arr[t2pos] = arr[t1pos];
arr[t1pos] = temp;
}
else{
swaps++;
if(arr[t4pos] < arr[t2pos]){
int temp = arr[t1pos];
arr[t1pos] = arr[t4pos];
arr[t4pos] = temp;
}
else{
int temp = arr[t2pos];
arr[t2pos] = arr[t1pos];
arr[t1pos] = temp;
}
}
}
return swaps;
}
This code returns the minimal number of swaps required to sort an array inplace.
For example, A[] = [7,3,4,1] By swapping 1 and 7, we get [1,3,4,7].
similarly B[] = [1,2,6,4,8,7,9]. We first swap 6 with 4, so, B[] -> [1,2,4,6,8,7,9]. Then 7 with 8. So -> [1,2,4,6,7,8,9]
The algorithm runs in O(number of pairs where value at index i < value at index i-1) ~ O(N) .