Consider the following code snippet
double *x, *id;
int i, n; // = vector size
// allocate and zero x
// set id to 0:n-1
for(i=0; i<n; i++) {
long iid = (long)id[i];
if(iid>=0 && iid<n && (double)iid==id[i]){
x[iid] = 1;
} else break;
}
The code uses values in vector id
of type double
as indices into vector x
. In order for the indices to be valid I verify that they are greater than or equal to 0, less than vector size n, and that doubles stored in id
are in fact integers. In this example id
stores integers from 1 to n, so all vectors are accessed linearly and branch prediction of the if
statement should always work.
For n=1e8
the code takes 0.21s on my computer. Since it seems to me it is a computationally light-weight loop, I expect it to be memory bandwidth bounded. Based on the benchmarked memory bandwidth I expect it to run in 0.15s. I calculate the memory footprint as 8 bytes per id
value, and 16 bytes per x
value (it needs to be both written, and read from memory since I assume SSE streaming is not used). So a total of 24 bytes per vector entry.
The questions:
- Am I wrong saying that this code should be memory bandwidth bounded, and that it can be improved?
- If not, do you know a way in which I could improve the performance so that it works with the speed of the memory?
- Or maybe everything is fine and I can not easily improve it otherwise than running it in parallel?
Changing the type of id
is not an option - it must be double
. Also, in the general case id
and x
have different sizes and must be kept as separate arrays - they come from different parts of the program. In short, I wonder if it is possible to write the bound checks and the type cast/integer validation in a more efficient manner.
For convenience, the entire code:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
static struct timeval tb, te;
void tic()
{
gettimeofday(&tb, NULL);
}
void toc(const char *idtxt)
{
long s,u;
gettimeofday(&te, NULL);
s=te.tv_sec-tb.tv_sec;
u=te.tv_usec-tb.tv_usec;
printf("%-30s%10li.%.6li\n", idtxt,
(s*1000000+u)/1000000, (s*1000000+u)%1000000);
}
int main(int argc, char *argv[])
{
double *x = NULL;
double *id = NULL;
int i, n;
// vector size is a command line parameter
n = atoi(argv[1]);
printf("x size %i\n", n);
// not included in timing in MATLAB
x = calloc(sizeof(double),n);
memset(x, 0, sizeof(double)*n);
// create index vector
tic();
id = malloc(sizeof(double)*n);
for(i=0; i<n; i++) id[i] = i;
toc("id = 1:n");
// use id to index x and set all entries to 4
tic();
for(i=0; i<n; i++) {
long iid = (long)id[i];
if(iid>=0 && iid<n && (double)iid==id[i]){
x[iid] = 1;
} else break;
}
toc("x(id) = 1");
}