The "pure" in "pure functional" refers to the "freedom from side effects" kind of purity. It has little relation to the meaning of "pure" being used when people talk about a "pure object-oriented language", which simply means that the language manipulates purely (only) in objects.
The reason is that pure-as-in-only is a reasonable distinction to use to classify object-oriented languages, because there are languages like Java and C++, which clearly have values that don't have all that much in common with objects, and there are also languages like Python and Ruby, for which it can be argued that every value is an object1
Whereas for functional languages, there are no practical languages which are "pure functional" in the sense that every value the language can manipulate is a function. It's certainly possible to program in such a language. The most basic versions of the lambda calculus don't have any notion of things that are not functions, but you can still do arbitrary computation with them by coming up with ways of representing the things you want to compute on as functions.2
But while the simplicity and minimalism of the lambda calculus tends to be great for proving things about programming, actually writing substantial programs in such a "raw" programming language is awkward. The function representation of basic things like numbers also tends to be very inefficient to implement on actual physical machines.
But there is a very important distinction between languages that encourage a functional style but allow untracked side effects anywhere, and ones that actually enforce that your functions are "pure" functions (similar to mathematical functions). Object-oriented programming is very strongly wed to the use of impure computations3, so there are no practical object-oriented programming languages that are pure in this sense.
So the "pure" in "pure functional language" means something very different from the "pure" in "pure object-oriented language".4 In each case the "pure vs not pure" distinction is one that is completely uninteresting applied to the other kind of language, so there's no very strong motive to standardise the use of the term.
1 There are corner cases to pick at in all "pure object-oriented" languages that I know of, but that's not really very interesting. It's clear that the object metaphor goes much further in languages in which 1
is an instance of some class, and that class can be sub-classed, than it does in languages in which 1
is something else than an object.
2 All computation is about representation anyway. Computers don't know anything about numbers or anything else. They just have bit-patterns that we use to represent numbers, and operations on bit-patterns that happen to correspond to operations on numbers (because we designed them so that they would).
3 This isn't fundamental either. You could design a "pure" object-oriented language that was pure in this sense. I tend to write most of my OO code to be pure anyway.
4 If this seems obtuse, you might reflect that the terms "functional", "object", and "language" have vastly different meanings in other contexts also.