So I was trying to use std::chrono::high_resolution_clock to time how long something takes to executes. I figured that you can just find the difference between the start time and end time...
To check my approach works, I made the following program:
#include <iostream>
#include <chrono>
#include <vector>
void long_function();
int main()
{
std::chrono::high_resolution_clock timer;
auto start_time = timer.now();
long_function();
auto end_time = timer.now();
auto diff_millis = std::chrono::duration_cast<std::chrono::duration<int, std::milli>>(end_time - start_time);
std::cout << "It took " << diff_millis.count() << "ms" << std::endl;
return 0;
}
void long_function()
{
//Should take a while to execute.
//This is calculating the first 100 million
//fib numbers and storing them in a vector.
//Well, it doesn't actually, because it
//overflows very quickly, but the point is it
//should take a few seconds to execute.
std::vector<unsigned long> numbers;
numbers.push_back(1);
numbers.push_back(1);
for(int i = 2; i < 100000000; i++)
{
numbers.push_back(numbers[i-2] + numbers[i-1]);
}
}
The problem is, it just outputs 3000ms exactly, when it clearly wasn't actually that.
On shorter problems, it just outputs 0ms... What am I doing wrong?
EDIT: If it's of any use, I'm using the GNU GCC compiler with -std=c++0x flag on