I have ~ 5 very large vectors (~ 108 MM entries) so any plot/stuff I do with them in R takes quite long time.
I am trying to visualize their distribution (histogram), and was wondering what would be the best way to superimpose their histogram distributions in R without taking too long. I am thinking to first fit a distribution to the histogram, and then plot all the distribution line fits together in one plot.
Do you have some suggestions on how to do that?
Let us say my vectors are:
x1, x2, x3, x4, x5.
I am trying to use this code: Overlaying histograms with ggplot2 in R
Example of the code I am using for 3 vectors (R fails to do the plot):
n = length(x1)
dat <- data.frame(xx = c(x1, x2, x3),yy = rep(letters[1:3],each = n))
ggplot(dat,aes(x=xx)) +
geom_histogram(data=subset(dat,yy == 'a'),fill = "red", alpha = 0.2) +
geom_histogram(data=subset(dat,yy == 'b'),fill = "blue", alpha = 0.2) +
geom_histogram(data=subset(dat,yy == 'c'),fill = "green", alpha = 0.2)
but it takes forever to produce the plot, and eventually it kicks me out of R. Any ideas on how to use ggplot2 efficiently for large vectors? Seems to me that I had to create a dataframe, of 5*108MM entries and then plot, highly inefficient in my case.
Thanks!