I have a program that generates a set of constraints in nonlinear real arithmetic. Consider the following two constraints:
(< (- (- (- (+ (* (- v0_x v3_x) (- v1_y v3_y) (+ (* (- v2_x v3_x) (- v2_x v3_x)) (* (- v2_y v3_y) (- v2_y v3_y)))) (* (- v0_y v3_y) (- v2_x v3_x) (+ (* (- v1_x v3_x) (- v1_x v3_x)) (* (- v1_y v3_y) (- v1_y v3_y)))) (* (- v1_x v3_x) (- v2_y v3_y) (+ (* (- v0_x v3_x) (- v0_x v3_x)) (* (- v0_y v3_y) (- v0_y v3_y))))) (* (- v1_y v3_y) (- v2_x v3_x) (+ (* (- v0_x v3_x) (- v0_x v3_x)) (* (- v0_y v3_y) (- v0_y v3_y))))) (* (- v0_y v3_y) (- v1_x v3_x) (+ (* (- v2_x v3_x) (- v2_x v3_x)) (* (- v2_y v3_y) (- v2_y v3_y))))) (* (- v0_x v3_x) (- v2_y v3_y) (+ (* (- v1_x v3_x) (- v1_x v3_x)) (* (- v1_y v3_y) (- v1_y v3_y))))) 0)
(> (- (- (- (+ (* (- v0_x v2_x) (- v1_y v2_y) (+ (* (- v3_x v2_x) (- v3_x v2_x)) (* (- v3_y v2_y) (- v3_y v2_y)))) (* (- v0_y v2_y) (- v3_x v2_x) (+ (* (- v1_x v2_x) (- v1_x v2_x)) (* (- v1_y v2_y) (- v1_y v2_y)))) (* (- v1_x v2_x) (- v3_y v2_y) (+ (* (- v0_x v2_x) (- v0_x v2_x)) (* (- v0_y v2_y) (- v0_y v2_y))))) (* (- v1_y v2_y) (- v3_x v2_x) (+ (* (- v0_x v2_x) (- v0_x v2_x)) (* (- v0_y v2_y) (- v0_y v2_y))))) (* (- v0_y v2_y) (- v1_x v2_x) (+ (* (- v3_x v2_x) (- v3_x v2_x)) (* (- v3_y v2_y) (- v3_y v2_y))))) (* (- v0_x v2_x) (- v3_y v2_y) (+ (* (- v1_x v2_x) (- v1_x v2_x)) (* (- v1_y v2_y) (- v1_y v2_y))))) 0)
when I assert them to Z3, it says that it is satisfiable, but as soon as I change the second constraint to (< ... 0) instead of (> ... 0) which should be now unsatisfiable, z3 runs forever. I am wondering about the limitations of z3 for handing nonlinear real arithmetic. Is there any chance that Z3 can handle the above constraints (like by changing the way they are formulated or any other way)?