If the function is actually recursive, then the transformation is as follows (and this is what a compiler which understand TCO will do for you, so you shouldn't have to do it yourself):
Original:
function func(a1, a2, a3...)
... doesn't contain either return or call
return val
...
return func(x1, x2, x3...)
...
... etc.
Converted to:
function func(a1, a2, a3...)
func: // label for goto (yuk!)
...
return val // No change
...
a1 = x1; a2 = x2; a3 = x3...; goto func;
...
... etc.
In order to make this transformation work with mutually co-recursive functions, you need to combine them into a single function, each of which comes with a label. As above, simple return
statements are not altered, and return foo(...)
turn into assignment to parameter variables followed by goto foo
.
Of course, when combining the functions, you may need to rename local variables to avoid conflicts. And you will also lose the ability to use more than one top-level function, unless you add something like a switch
statement (with goto
s) at the top entry point, before any label. (In fact, in a language in which allowed goto case foo
, you could just use the case labels as labels.)
The use of goto
is, of course, ugly. If you use a language which preferably guarantees tail-call optimization, or failing that, at least makes a reasonable attempt to do it and reports when it fails, then there is absolutely no motivation to replace the recursive solution, which (in my opinion) is almost always more readable.
In some cases, it's possible to replace the goto
and label with something like while (1)
{ ... }or other such loops, but that involves replacing the
gotos with
continue` (or equivalent), and that won't work if they're nested inside of other loops. So you can actually waste quite a lot of time making the ugly transformation slightly less ugly, and still not end up with a program as readable as the original.
I'll stop proselytizing recursion now. :)
Edited (I couldn't help it, sorry)
Here's a back-tracking n-queens solution in Lua (which does do TCO), consisting of a tail-recursive solver and a tail-recursive verifier:
function solve(legal, n, first, ...)
if first == nil -- Failure
then return nil
elseif first >= n -- Back-track
then return solve(legal, n, ...)
elseif not legal(first + 1, ...) -- Continue search
then return solve(legal, n, first + 1, ...)
elseif n == 1 + select("#", ...) -- Success
then return first + 1, ...
else -- Forward
return solve(legal, n, 0, first + 1, ...)
end
end
function queens_helper(dist, first, second, ...)
if second == nil
then return true
elseif first == second or first - dist == second or first + dist == second
then return false
else
return queens_helper(dist + 1, first, ...)
end
end
function queens_legal(...) return queens_helper(1, ...) end
-- in case you want to try n-rooks, although the solution is trivial.
function rooks_legal(first, second, ...)
if second == nil then return true
elseif first == second then return false
else return rooks_legal(first, ...)
end
end
function queens(n) return solve(queens_legal, n, 0) end