Here's how I'd do this for a smaller but similar problem:
A <- 1:13
B <- 1:26
C <- 1:26
D <- c(1:13, 27:40)
mymat <- expand.grid(A, B, C, D)
names(mymat) <- c("A", "B", "C", "D")
mymat <- as.matrix(mymat)
mymeans <- rowSums(mymat)/4
You'll probably crash R if you just up all the indices, but you could probably set up a loop, something like this (not tested):
B <- 1:266
C <- 1:266
D <- c(1:133, 267:400)
for(A in 1:133) {
mymat <- expand.grid(A, B, C, D)
names(mymat) <- c("A", "B", "C", "D")
mymat <- as.matrix(mymat)
mymeans <- rowSums(mymat)/4
write.table(mymat, file = paste("matrix", A, "txt", sep = "."))
write.table(mymeans, file = paste("means", A, "txt", sep = "."))
rm(mymat, mymeans)
}
to get them all. That still might be too big, in which case you could do a nested loop, or loop over D
(since it's the biggest)
Alternatively,
n <- 1e7
A <- sample(133, size = n, replace= TRUE)
B <- sample(266, size = n, replace= TRUE)
C <- sample(266, size = n, replace= TRUE)
D <- sample(x = c(1:133, 267:400), size = n, replace= TRUE)
mymeans <- (A+B+C+D)/4
will give you a large sample of the means and take no time at all.
hist(mymeans)