I already answered how to to it in general guidelines in this thread.
Here is how to do method 1 (normalizing to standard normal deviation) in octave (Demonstrating for a random matrix A
, of course can be applied to any matrix, which is how the picture is represented):
>>A = rand(5,5)
A =
0.078558 0.856690 0.077673 0.038482 0.125593
0.272183 0.091885 0.495691 0.313981 0.198931
0.287203 0.779104 0.301254 0.118286 0.252514
0.508187 0.893055 0.797877 0.668184 0.402121
0.319055 0.245784 0.324384 0.519099 0.352954
>>s = std(A(:))
s = 0.25628
>>u = mean(A(:))
u = 0.37275
>>A_norn = (A - u) / s
A_norn =
-1.147939 1.888350 -1.151395 -1.304320 -0.964411
-0.392411 -1.095939 0.479722 -0.229316 -0.678241
-0.333804 1.585607 -0.278976 -0.992922 -0.469159
0.528481 2.030247 1.658861 1.152795 0.114610
-0.209517 -0.495419 -0.188723 0.571062 -0.077241
In the above you use:
- To get the standard deviation of the matrix:
s = std(A(:))
- To get the mean value of the matrix:
u = mean(A(:))
- And then following the formula
A'[i][j] = (A[i][j] - u)/s
with the
vectorized version: A_norm = (A - u) / s
Normalizing it with vector normalization is also simple:
>>abs = sqrt((A(:))' * (A(:)))
abs = 2.2472
>>A_norm = A / abs
A_norm =
0.034959 0.381229 0.034565 0.017124 0.055889
0.121122 0.040889 0.220583 0.139722 0.088525
0.127806 0.346703 0.134059 0.052637 0.112369
0.226144 0.397411 0.355057 0.297343 0.178945
0.141980 0.109375 0.144351 0.231000 0.157065
In the abvove:
abs
is the absolute value of the vector (its length), which is calculated with vectorized multiplications (A(:)' * A(:)
is actually sum(A[i][j]^2)
)
- Then we use it to normalize the vector so it will be of length 1.