So I was trying to puzzle out how to calculate the average hue of a number of objects whose colors are represented by HSL values. Thankfully, I stumbled across this Stack Overflow post, and set to work implementing the algorithm provided in the top answer (I am working in C++).
Unfortunately, my implementation doesn't seem to work. Here it is, in full; note that though I write "Hue" I am using angles, in degrees, as per the initial implementation (switching from 0-360 angles to 0-256 hues, once I know my code works, shouldn't be hard).
#include <iostream>
#include <vector>
#include <cmath>
#define PI (4*atan(1))
int main()
{
///
/// Calculations adapted from this source:
/// https://stackoverflow.com/questions/8169654/how-to-calculate-mean-and-standard-deviation-for-hue-values-from-0-to-360
std::vector<double> Hues = {355, 5, 5, 5, 5};
//These will be used to store the sum of the angles
double X = 0.0;
double Y = 0.0;
//Loop through all H values
for (int hue = 0; hue < Hues.size(); ++hue)
{
//Add the X and Y values to the sum X and Y
X += cos(Hues[hue] / 180 * PI);
Y += sin(Hues[hue] / 180 * PI);
}
//Now average the X and Y values
X /= Hues.size();
Y /= Hues.size();
//Get atan2 of those
double AverageColor = atan2(X, Y) * 180 / PI;
std::cout << "Average: " << AverageColor << "\n";
return 0;
}
Instead of the expected answer of 3 (since 355 should be equivalent to -5 in this scheme), I get 86.9951.
Can somebody point out what I'm doing wrong? This seems very basic.