Having an abstract class like "Dog" with a virtual method like "bark" allows all classes that inherit from Dog to have their bark code called in the same way, even though the Beagle's bark is implemented way differently than the Collie's.
Without a common abstract parent (or at least a common parent with a bark virtual method) it'd be difficult to do the following:
Have a Vector of type Dog that contains Collies, Beagles, German Shepherds etc and make each of them bark. With a Vector of Dogs that contains Collies, Beagles, German Shepherds all you would have to do to make them all bark is to iterate through in a for loop and call bark on each one. Otherwise you'd have to have a separate Vector of Collies, Vector of Beagles etc.
If the question is "why make Dog abstract when it could be concrete, have a virtual bark defined with a default implementation that can be overriden?", the answer would be that this may be acceptable sometimes -- but, from a design perspective, there really isn't any such thing as a Dog that isn't a Collie or a Beagle or some other breed or mix so although they are all Dogs, there is not one of them in reality that is a Dog but not some other derived class too. Also, since dogs barking is so varied from one breed to another, there is unlikely to be any real acceptable default implementation of bark that would be acceptable for any decent group of Dogs.
I hope this helps you understand the purpose: yes, you're going to have to implement bark in each subclass anyway, but the common abstract ancestor lets you treat any subclass as a member of a base class and invoke behaviors that may be conceptually similar like bark but in fact have very different implementations.