I have a Java method that performs two computations over an input set: an estimated and an accurate answer. The estimate can always be computed cheaply and in reliable time. The accurate answer can sometimes be computed in acceptable time and sometimes not (not known a priori ... have to try and see).
What I want to set up is some framework where if the accurate answer takes too long (a fixed timeout), the pre-computed estimate is used instead. I figured I'd use a thread for this. The main complication is that the code for computing the accurate answer relies on an external library, and hence I cannot "inject" Interrupt support.
A standalone test-case for this problem is here, demonstrating my problem:
package test;
import java.util.Random;
public class InterruptableProcess {
public static final int TIMEOUT = 1000;
public static void main(String[] args){
for(int i=0; i<10; i++){
getAnswer();
}
}
public static double getAnswer(){
long b4 = System.currentTimeMillis();
// have an estimate pre-computed
double estimate = Math.random();
//try to get accurate answer
//can take a long time
//if longer than TIMEOUT, use estimate instead
AccurateAnswerThread t = new AccurateAnswerThread();
t.start();
try{
t.join(TIMEOUT);
} catch(InterruptedException ie){
;
}
if(!t.isFinished()){
System.err.println("Returning estimate: "+estimate+" in "+(System.currentTimeMillis()-b4)+" ms");
return estimate;
} else{
System.err.println("Returning accurate answer: "+t.getAccurateAnswer()+" in "+(System.currentTimeMillis()-b4)+" ms");
return t.getAccurateAnswer();
}
}
public static class AccurateAnswerThread extends Thread{
private boolean finished = false;
private double answer = -1;
public void run(){
//call to external, non-modifiable code
answer = accurateAnswer();
finished = true;
}
public boolean isFinished(){
return finished;
}
public double getAccurateAnswer(){
return answer;
}
// not modifiable, emulate an expensive call
// in practice, from an external library
private double accurateAnswer(){
Random r = new Random();
long b4 = System.currentTimeMillis();
long wait = r.nextInt(TIMEOUT*2);
//don't want to use .wait() since
//external code doesn't support interruption
while(b4+wait>System.currentTimeMillis()){
;
}
return Math.random();
}
}
}
This works fine outputting ...
Returning estimate: 0.21007465651836377 in 1002 ms
Returning estimate: 0.5303547292361411 in 1001 ms
Returning accurate answer: 0.008838428149438915 in 355 ms
Returning estimate: 0.7981717302567681 in 1001 ms
Returning estimate: 0.9207406241557682 in 1000 ms
Returning accurate answer: 0.0893839926072787 in 175 ms
Returning estimate: 0.7310211480220586 in 1000 ms
Returning accurate answer: 0.7296754467596422 in 530 ms
Returning estimate: 0.5880164300851529 in 1000 ms
Returning estimate: 0.38605296260291233 in 1000 ms
However, I have a very large input set (in the order of billions of items) to run my analysis over, and I'm uncertain as to how to clean up the threads that do not finish (I do not want them running in the background).
I know that various methods to destroy threads are deprecated with good reason. I also know that the typical way to stop a thread is to use interrupts. However, in this case, I don't see that I can use an interrupt since the run()
method passes a single call to an external library.
How can I kill/clean-up threads in this case?