I have a matrix with dates as row names and TAG#'s as column names. The matrix is populated with 0's and 1's for presence/absence. eg
29735 29736 29737 29738 29739 29740
2010-07-15 1 0 0 0 0 0
2010-07-16 1 1 0 0 0 0
2010-07-17 1 1 0 0 0 0
2010-07-18 1 1 0 0 0 0
2010-07-19 1 1 0 0 0 0
2010-07-20 1 1 0 0 0 0
I have the following script for calculating site fidelity (% days present):
##Presence/absence data setup
##import file
read.csv('pn.csv')->'pn'
##strip out desired columns
pn[,c(5,7:9)]->pn
##create table of dates and tags
table(pn$Date,pn$Tag)->T
##convert to a matrix
as.matrix(T)->U
##convert to binary for presence/absence
1*(U>2)->U
##insert missing rows
library(micEcon)
insertRow(U,395,0)->U
rownames(U)[395]<-'2011-08-16'
insertRow(U,253,0)->U
rownames(U)[253]<-'2011-03-26'
insertRow(U,250,0)->U
rownames(U)[250]<-'2011-03-22'
insertRow(U,250,0)->U
rownames(U)[250]<-'2011-03-21'
##for presence/absence
##define i(tag or column)
1->i
##define place to store results
cbind(colnames(U),rep(NA,length(colnames(U))))->sfresult
##loop instructions
for(i in 1:ncol(U)){
##identify first detection day
grep(1,U[,i])[1]->tagrow
##count total days since first detection
nrow(U)-tagrow+1->days
##count days present
length(grep(1,U[,i]))->present
##calculate site fidelity
present/days->sfresult[i,2]
}
##change class of results column
as.numeric(sfresult[,2])->sfresult[,2]
##histogram
bins<-c(0,.3,.6,1)
xlab<-c('Low','Med','High')
hist(as.numeric(sfresult[,2]), breaks=bins,xaxt='n', col=heat.colors(3), xlab='Percent Days Present',ylab='Frequency (# of individuals)',main='Site Fidelity',freq=TRUE,labels=xlab)
axis(1,at=bins)
I'd like to calculate site fidelity on a weekly basis. I believe it would be easiest to simply collapse the matrix by combining every seven rows into a weekly matrix that simply sums the 0's and 1's from the daily matrix. Then the same script for site fidelity would calculate it on a weekly basis. Problem is I'm a newbie and I've had trouble finding an answer on how to collapse the daily matrix to a weekly matrix. Thanks for any suggestions.