It is generally not advisable to put secrets in a query string, which can then be book marked and copied, exposing the password at-rest in history files, cookies, etc.
To just safeguard the password in this use-case, an option would be to hash the password (one-way, not reversible). In this way, the actual password is not known in transit nor at-rest but... it implies that an attacker can still use the hashed value to login to the server that would presumably compare the hash value to its store for authentication.
Update: Switching to stateless (JWT) sessions
In the olden days when buggies were a thing (okay - they are still a thing with some fringe groups but) - we used "sessions".
A "session-ID" (see JSESSION_ID) for example in Java/J2EE/Servlet based systems was stored as a cookie. That value, being a random number, was hard to guess - but it had problems from hijacking to memory and lookup overhead on the server.
In 2020 times (as of this writing) ... JSON Web Tokens (JWT) can be used to securely encapsulate the user-session information and be pushed back down in an immutable cookie without ever exposing the password and with very little server overhead.
In this model, after login, the server issues a token (using OAUTH2 or related), which has an expiration time-stamp.
This data and possibly other session information can then be encrypted, hashed, signed and wrapped up in a JWT (token) - as a cookie back to the web-browser.
Ref: https://oauth.net/2/jwt/
At this point, the client cannot do anything to compromise (or even view) the cookie because any sensitive data should have been encrypted (using AES256 et al or better) and the contents hashed and the hash signed. What this means is that when the server gets the token back, it looks at the timestamp and may throw it out - forcing re-authentication and then...
Can otherwise verify it signed the content, hash the contents and verify the hash and decrypt data if needed (which would not include the password but rather just the ID of the user - which is verified and not necessarily a secret per se).
This can include already-looked-up scopes (authorization) for what the user can do etc - avoiding round trips to the authentication server until the token times out.
Thus the above (using JWTs, hashing, signing, encrypting - into a cookie) is the recommended way to both go stateless and avoid passing around a secret between the client and server.
Ref: https://auth0.com/blog/stateless-auth-for-stateful-minds/
Additionally, consider that multi-factor authentication schemes (see Google authenticator) and related systems are a much stronger security posture (stealing password is not enough and the keys auto-rotate on external systems) but do require semi-frequent access to the rotating key system, which inhibits a smooth user experience to some extent.
Update: Multi-Factor auth by Google and others has gotten much better.
Older companies still use SMS one-time-passwords (OTP) ... which can be compromised by going to a wireless company store and claiming SIM card loss (given a known phone-number).
Google and other more advanced companies comparatively use rotating tokens that can be embedded in a smartphone app that then are used for many services.
Google even has push-notification where user just confirms by button press: "Yes - it is me".