From this post (and not only) we got to the point that the ++ operator cannot be applied on expressions returning value. And it's really obvious that 5++ is better to write as 5 + 1. I just want to summarize the whole thing around the increment/decrement operator. So let's go through these snippets of code that could be helpful to somebody stuck with the ++ first time at least.
// Literal
int x = 0++; // Error
// Constant
const int Y = 1;
double f = Y++; // error. makes sense, constants are not variables actually.
int z = AddFoo()++; // Error
Summary: ++ works for variables, properties (through a synthetic sugar) and indexers(the same).
Now the interest part - any literal expressions are optimized in CSC and, hence when we write, say
int g = 5 + 1; // This is compiled to 6 in IL as one could expect.
IL_0001: ldc.i4.6 // Pushes the integer value of 6 onto the evaluation stack as an int32.
For 5++ doesn't mean 5 becomes 6, it could be a shorthand for 5 + 1, like for x++ = x + 1 What's the real reason behind this restriction?
int p = Foo()++ //? yes you increase the return value of Foo() with 1, what's wrong with that?
Examples of code that can lead to logical issues are appreciated.
One of real-life example could be, perform one more actions than in the array.
for (int i = 0; i < GetCount()++; i++) { }
Maybe the lack of usage opts compiler teams to avoid similar features? I don't insist this is a feature we lack of, just want to understand the dark side of this for compiler writers perhaps, though I'm not. But I know c++ allows this when returning a reference in the method. I'm neither a c++ guy(very poor knowledge) just want to get the real gist of the restriction. Like, is it just because c# guys opted to restrict the ++ over value expressions or there are definite cases leading to unpredictable results?