I am trying to use NumPy and vectorization operations to make a section of code run faster. I appear to have a misunderstanding of how to vectorize this code, however (probably due to an incomplete understanding of vectorization).
Here's the working code with loops (A and B are 2D arrays of a set size, already initialized):
for k in range(num_v):
B[:] = A[:]
for i in range(num_v):
for j in range(num_v):
A[i][j] = min(B[i][j], B[i][k] + B[k][j])
return A
And here is my attempt at vectorizing the above code:
for k in range(num_v):
B = numpy.copy(A)
A = numpy.minimum(B, B[:,k] + B[k,:])
return A
For testing these, I used the following, with the code above wrapped in a function called 'algorithm':
def setup_array(edges, num_v):
r = range(1, num_v + 1)
A = [[None for x in r] for y in r] # or (numpy.ones((num_v, num_v)) * 1e10) for numpy
for i in r:
for j in r:
val = 1e10
if i == j:
val = 0
elif (i,j) in edges:
val = edges[(i,j)]
A[i-1][j-1] = val
return A
A = setup_array({(1, 2): 2, (6, 4): 1, (3, 2): -3, (1, 3): 5, (3, 6): 5, (4, 5): 2, (3, 1): 4, (4, 3): 8, (3, 4): 6, (2, 4): -4, (6, 5): -5}, 6)
B = []
algorithm(A, B, 6)
The expected outcome, and what I get with the first code is:
[[0, 2, 5, -2, 0, 10]
[8, 0, 4, -4, -2, 9]
[4, -3, 0, -7, -5, 5]
[12, 5, 8, 0, 2, 13]
[10000000000.0, 9999999997.0, 10000000000.0, 9999999993.0, 0, 10000000000.0]
[13, 6, 9, 1, -5, 0]]
The second (vectorized) function instead returns:
[[ 0. -4. 0. 0. 0. 0.]
[ 0. -4. 0. -4. 0. 0.]
[ 0. -4. 0. 0. 0. 0.]
[ 0. -4. 0. 0. 0. 0.]
[ 0. -4. 0. 0. 0. 0.]
[ 0. -4. 0. 0. -5. 0.]]
What am I missing?