Consider a while loop in ANSI C whose only purpose is to delay execution:
unsigned long counter = DELAY_COUNT;
while(counter--);
I've seen this used a lot to enforce delays on embedded systems, where eg. there is no sleep
function and timers or interrupts are limited.
My reading of the ANSI C standard is that this can be completely removed by a conforming compiler. It has none of the side effects described in 5.1.2.3:
Accessing a volatile object, modifying an object, modifying a file, or calling a function that does any of those operations are all side effects, which are changes in the state of the execution environment.
...and this section also says:
An actual implementation need not evaluate part of an expression if it can deduce that its value is not used and that no needed side effects are produced (including any caused by calling a function or accessing a volatile object).
Does this imply that the loop could be optimised out? Even if counter
were volatile
?
Notes:
- That this is not quite the same as Are compilers allowed to eliminate infinite loops?, because that refers to infinite loops, and questions arise about when a program is allowed to terminate at all. In this case, the program will certainly proceed past this line at some point, optimisation or not.
- I know what GCC does (removes the loop for
-O1
or higher, unlesscounter
isvolatile
), but I want to know what the standard dictates.