If you're interested in using my package grid (userguide)
here as an example to get you started.
(And if you don't want to use it, you may find some of the
source code helpful.)
Create a grid with 4 rows and 5 columns.
λ> :m + Math.Geometry.Grid
λ> let g = rectSquareGrid 4 5
λ> indices g
[(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),(4,0),(4,1),(4,2),(4,3)]
We want to be able to map "coin values" to grid positions, so we'll
create a GridMap.
λ> :m + Math.Geometry.GridMap
λ> let m = lazyGridMap g [5,4,3,8,6,0,2,1,0,7,0,1,9,4,3,2,3,4,0,9]
λ> m
lazyGridMap (rectSquareGrid 4 5) [5,4,3,8,6,0,2,1,0,7,0,1,9,4,3,2,3,4,0,9]
λ> toList m
[((0,0),5),((0,1),4),((0,2),3),((0,3),8),((1,0),6),((1,1),0),((1,2),2),((1,3),1),((2,0),0),((2,1),7),((2,2),0),((2,3),1),((3,0),9),((3,1),4),((3,2),3),((3,3),2),((4,0),3),((4,1),4),((4,2),0),((4,3),9)]
We can find out the neighbours of any cell in the grid,
but for your application, we run into a bit of a problem: my
RectSquareGrid type doesn't allow diagonal moves.
λ> neighbours (1,2) m
[(0,2),(1,3),(2,2),(1,1)]
Now, I'd be happy to create a new type of Grid
that would meet your
needs. Alternatively, you could write your own function
which would include diagonal neighbours:
λ> let neighbours2 (x, y) g = filter (`inGrid` g) [(x-1,y-1), (x-1,y), (x-1,y+1), (x,y-1), (x,y+1), (x+1,y-1), (x+1,y), (x+1,y+1)]
λ> neighbours2 (1,2) m
[(0,1),(0,2),(0,3),(1,1),(1,3),(2,1),(2,2),(2,3)]
But you're only interested in allowing downward moves, either straight down or diagonal, so here's a more useful function:
λ> let allowedMoves (x, y) g = filter (`inGrid` g) [(x+1,y-1), (x+1,y), (x+1,y+1)]
λ> allowedMoves (1,2) m
[(2,1),(2,2),(2,3)]
So now we can write a function that gives you all possible paths from a given index to the bottom row of the grid.
allPathsFrom a g | fst a == fst (size g) = [[a]]
| otherwise = Prelude.map (a:) xs
where xs = concatMap (\x -> allPathsFrom x g) ys
ys = allowedMoves a g
For example:
λ> allPathsFrom (0,1) m
[[(0,1),(1,0),(2,0),(3,0),(4,0)],[(0,1),(1,0),(2,0),(3,0),(4,1)],[(0,1),(1,0),(2,0),(3,1),(4,0)],[(0,1),(1,0),(2,0),(3,1),(4,1)],[(0,1),(1,0),(2,0),(3,1),(4,2)],[(0,1),(1,0),(2,1),(3,0),(4,0)],[(0,1),(1,0),(2,1),(3,0),(4,1)],[(0,1),(1,0),(2,1),(3,1),(4,0)],[(0,1),(1,0),(2,1),(3,1),(4,1)],[(0,1),(1,0),(2,1),(3,1),(4,2)],[(0,1),(1,0),(2,1),(3,2),(4,1)],[(0,1),(1,0),(2,1),(3,2),(4,2)],[(0,1),(1,0),(2,1),(3,2),(4,3)],[(0,1),(1,1),(2,0),(3,0),(4,0)],[(0,1),(1,1),(2,0),(3,0),(4,1)],[(0,1),(1,1),(2,0),(3,1),(4,0)],[(0,1),(1,1),(2,0),(3,1),(4,1)],[(0,1),(1,1),(2,0),(3,1),(4,2)],[(0,1),(1,1),(2,1),(3,0),(4,0)],[(0,1),(1,1),(2,1),(3,0),(4,1)],[(0,1),(1,1),(2,1),(3,1),(4,0)],[(0,1),(1,1),(2,1),(3,1),(4,1)],[(0,1),(1,1),(2,1),(3,1),(4,2)],[(0,1),(1,1),(2,1),(3,2),(4,1)],[(0,1),(1,1),(2,1),(3,2),(4,2)],[(0,1),(1,1),(2,1),(3,2),(4,3)],[(0,1),(1,1),(2,2),(3,1),(4,0)],[(0,1),(1,1),(2,2),(3,1),(4,1)],[(0,1),(1,1),(2,2),(3,1),(4,2)],[(0,1),(1,1),(2,2),(3,2),(4,1)],[(0,1),(1,1),(2,2),(3,2),(4,2)],[(0,1),(1,1),(2,2),(3,2),(4,3)],[(0,1),(1,1),(2,2),(3,3),(4,2)],[(0,1),(1,1),(2,2),(3,3),(4,3)],[(0,1),(1,2),(2,1),(3,0),(4,0)],[(0,1),(1,2),(2,1),(3,0),(4,1)],[(0,1),(1,2),(2,1),(3,1),(4,0)],[(0,1),(1,2),(2,1),(3,1),(4,1)],[(0,1),(1,2),(2,1),(3,1),(4,2)],[(0,1),(1,2),(2,1),(3,2),(4,1)],[(0,1),(1,2),(2,1),(3,2),(4,2)],[(0,1),(1,2),(2,1),(3,2),(4,3)],[(0,1),(1,2),(2,2),(3,1),(4,0)],[(0,1),(1,2),(2,2),(3,1),(4,1)],[(0,1),(1,2),(2,2),(3,1),(4,2)],[(0,1),(1,2),(2,2),(3,2),(4,1)],[(0,1),(1,2),(2,2),(3,2),(4,2)],[(0,1),(1,2),(2,2),(3,2),(4,3)],[(0,1),(1,2),(2,2),(3,3),(4,2)],[(0,1),(1,2),(2,2),(3,3),(4,3)],[(0,1),(1,2),(2,3),(3,2),(4,1)],[(0,1),(1,2),(2,3),(3,2),(4,2)],[(0,1),(1,2),(2,3),(3,2),(4,3)],[(0,1),(1,2),(2,3),(3,3),(4,2)],[(0,1),(1,2),(2,3),(3,3),(4,3)]]
Note that since GridMap
s are also Grid
s, we can invoke all of the above functions on m
or g
.
λ> allPathsFrom (0,1) m
Let me know (amy at nualeargais dot ie) if you would like me to add
a grid allowing diagonal moves to my grid
package.