Reflection is, in itself and by nature, slow. See this question for more details.
This is caused by a few reasons. Jon Skeet explains it nicely:
Check that there's a parameterless constructor Check the accessibility
of the parameterless constructor Check that the caller has access to
use reflection at all Work out (at execution time) how much space
needs to be allocated Call into the constructor code (because it won't
know beforehand that the constructor is empty)
Basically, reflection has to perform all the above steps before invocation, whereas normal method invocation has to do much less.
The JITted code for instantiating B is incredibly lightweight.
Basically it needs to allocate enough memory (which is just
incrementing a pointer unless a GC is required) and that's about it -
there's no constructor code to call really; I don't know whether the
JIT skips it or not but either way there's not a lot to do.
With that said, there are many cases where Java is not dynamic enough to do what you want, and reflection provides a simple and clean alternative. Consider the following scenario:
- You have a large number of classes which represent various items, i.e. a
Car
, Boat
, and House
.
- They both extend/implement the same class:
LifeItem
.
- Your user inputs one of 3 strings, "Car", "Boat", or "House".
- Your goal is to access a method of LifeItem based on the parameter.
- The first approach that comes to mind is to build an if/else structure, and construct the wanted
LifeItem
. However, this is not very scalable and can become very messy once you have dozens of LifeItem
implementations.
Reflection can help here: it can be used to dynamically construct a LifeItem
object based on name, so a "Car" input would get dispatched to a Car
constructor. Suddenly, what could have been hundreds of lines of if/else code turns into a simple line of reflection. The latter scenario would not be as valid on a Java 7+ platform due to the introduction of switch statements with Strings, but even then then a switch with hundreds of cases is something I'd want to avoid. Here's what the difference between cleanliness would look like in most cases:
Without reflection:
public static void main(String[] args) {
String input = args[0];
if(input.equals("Car"))
doSomething(new Car(args[1]));
else if(input.equals("Boat"))
doSomething(new Boat(args[1]));
else if (input.equals("House"))
doSomething(new House(args[1]));
... // Possibly dozens more if/else statements
}
Whereas by utilizing reflection, it could turn into:
public static void main(String[] args) {
String input = args[0];
try {
doSomething((LifeItem)Class.forName(input).getConstructor(String.class).newInstance(args[1]));
} catch (Exception ie) {
System.err.println("Invalid input: " + input);
}
}
Personally, I'd say the latter is neater, more concise, and more maintainable than the first. In the end its a personal preference, but that's just one of the many cases where reflection is useful.
Additionally, when using reflection, you should attempt to cache as much information as possible. In other words employ simple, logical things, like not calling get(Declared)Method
everywhere if you can help it: rather, store it in a variable so you don't have the overhead of refetching the reference whenever you want to use it.
So those are the two extremes of the pro's and con's of reflection. To sum it up if reflection improves your code's readability (like it would in the presented scenario), by all means go for it. And if you do, just think about reducing the number of get*
reflection calls: those are the easiest to trim.