I have this little chunk of code I found here:
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
def word_feats(words):
return dict([(word, True) for word in words])
negids = movie_reviews.fileids('neg')
posids = movie_reviews.fileids('pos')
negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
negcutoff = len(negfeats)*3/4
poscutoff = len(posfeats)*3/4
trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff]
testfeats = negfeats[negcutoff:] + posfeats[poscutoff:]
print 'train on %d instances, test on %d instances' % (len(trainfeats), len(testfeats))
classifier = NaiveBayesClassifier.train(trainfeats)
print 'accuracy:', nltk.classify.util.accuracy(classifier, testfeats)
classifier.show_most_informative_features()
But how can I classify a random word that might be in the corpus.
classifier.classify('magnificent')
Doesn't work. Does it need some kind of object?
Thank you very much.
EDIT: Thanks to @unutbu's feedback and some digging here and reading the comments on the original post the following yields 'pos' or 'neg' for this code (this one's a 'pos')
print(classifier.classify(word_feats(['magnificent'])))
and this yields the evaluation of the word for 'pos' or 'neg'
print(classifier.prob_classify(word_feats(['magnificent'])).prob('neg'))