Note, this is a homework assignment.
I need to find the mode of an array (positive values) and secondarily return that value if the mode is greater that sizeof(array)/2
,the dominant value. Some arrays will have neither.
That is simple enough, but there is a constraint that the array must NOT be sorted prior to the determination, additionally, the complexity must be on the order of O(nlogn).
Using this second constraint, and the master theorem we can determine that the time complexity 'T(n) = A*T(n/B) + n^D' where A=B and log_B(A)=D for O(nlogn) to be true. Thus, A=B=D=2. This is also convenient since the dominant value must be dominant in the 1st, 2nd, or both halves of an array.
Using 'T(n) = A*T(n/B) + n^D' we know that the search function will call itself twice at each level (A), divide the problem set by 2 at each level (B). I'm stuck figuring out how to make my algorithm take into account the n^2 at each level.
To make some code of this:
int search(a,b) {
search(a, a+(b-a)/2);
search(a+(b-a)/2+1, b);
}
The "glue" I'm missing here is how to combine these divided functions and I think that will implement the n^2 complexity. There is some trick here where the dominant must be the dominant in the 1st or 2nd half or both, not quite sure how that helps me right now with the complexity constraint.
I've written down some examples of small arrays and I've drawn out ways it would divide. I can't seem to go in the correct direction of finding one, single method that will always return the dominant value.
At level 0, the function needs to call itself to search the first half and second half of the array. That needs to recurse, and call itself. Then at each level, it needs to perform n^2 operations. So in an array [2,0,2,0,2] it would split that into a search on [2,0] and a search on [2,0,2] AND perform 25 operations. A search on [2,0] would call a search on [2] and a search on [0] AND perform 4 operations. I'm assuming these would need to be a search of the array space itself. I was planning to use C++ and use something from STL to iterate and count the values. I could create a large array and just update counts by their index.