Let's say we have to create a calculator, and the first function it has is Fatorial. We can write it as a recursive function or use a loop to get the result. We all know that recursion is more slow because of it's exponential nature. But how to prove it by code and not by counting lines?
I have tried to calculate the amount of milliseconds spent, but with my i7 it is always zero between the initial time and when the code stops.
How can I measure the difference of speed of code between loop and recursive method?
type
TJanela = class(TForm)
Instrucao: TLabel;
Entrada: TEdit;
Botao: TButton;
procedure Calcular(Sender: TObject);
end;
var
Janela: TJanela;
Val, Fat, Start, TimeRecursive, TimeLoop: Int64;
function FR(N: Int64): Int64; // Fatorial Recursivo
function FL(N: Int64): Int64; // Fatorial em Loop
implementation
{$R *.dfm}
procedure TJanela.Calcular(Sender: TObject);
begin
Val := StrToInt(Entrada.Text);
Start := StrToInt(FormatDateTime('nnsszzz',Now));
Fat := FR(Valor);
TimeRecursive := StrToInt(FormatDateTime('nnsszzz',Now)) - Start;
Start := StrToInt(FormatDateTime('nnsszzz',Now));
Fat := FL(Valor);
TimeLoop := StrToInt(FormatDateTime('nnsszzz',Now)) - Start;
if Val > 25 then
ShowMessage('Delphi can't calculate above [ 25! ]')
else
ShowMessage(' [ ' +
IntToStr(Val) + '! ] is equal to [ ' +
FormatFloat('###,###,###,###,###,###',Fat) + ' ]'#13#13+
'Recursive: [ ' + IntToStr(TimeRecursive) + ' ] ms;'#13+
'Loop: [ ' + IntToStr(TimeLoop) + ' ] ms;');
end;
function FR(N: Int64): Int64;
begin
if N <= 1 then
Result := 1
else
Result := N * FR(N - 1);
end;
function FL(N: Int64): Int64;
var
I: Integer;
begin
for I := 2 to N - 1 do
N := N * I;
if N = 0 then
Result := 1
else
Result := N;
end;
Now that David came with the answer, I asked a question on Mathematics so they can help me to come out with two equations to determine the proximate time a given factorial will spend on the computer in both methods.