There are three basic approaches that I'd choose from. One is the switch statement, and it is a very good option under certain conditions. Remember - the compiler is probably going to compile that into an efficient table-lookup for you, though it will be looking up pointers to the case code blocks rather than data values.
Options two and three involve static arrays of the type you are using. Option two is a simple linear search - which you are (I think) already doing - very appropriate if the number of items is small.
Option three is a binary search. Static arrays can be used with standard library algorithms - just use the first and first+count pointers in the same way that you'd use begin and end iterators. You will need to ensure the data is sorted (using std::sort or std::stable_sort), and use std::lower_bound to do the binary search.
The complication in this case is that you'll need a comparison function object which acts like operator< with a stored or referenced value, but which only looks at the key field of your struct. The following is a rough template...
class cMyComparison
{
private:
const fieldtype& m_Value; // Note - only storing a reference
public:
cMyComparison (const fieldtype& p_Value) : m_Value (p_Value) {}
bool operator() (const structtype& p_Struct) const
{
return (p_Struct.field < m_Value);
// Warning : I have a habit of getting this comparison backwards,
// and I haven't double-checked this
}
};
This kind of thing should get simpler in the next C++ standard revision, when IIRC we'll get anonymous functions (lambdas) and closures.
If you can't put the sort in your apps initialisation, you might need an already-sorted boolean static variable to ensure you only sort once.
Note - this is for information only - in your case, I think you should either stick with linear search or use a switch statement. The binary search is probably only a good idea when...
- There are a lot of data items to search
- Searches are done very frequently (many times per second)
- The key enumerate values are sparse (lots of big gaps) - otherwise, switch is better.
If the coding effort were trivial, it wouldn't be a big deal, but C++ currently makes this a bit harder than it should be.
One minor note - it may be a good idea to define an enumerate for the size of your array, and to ensure that your static array declaration uses that enumerate. That way, your compiler should complain if you modify the table (add/remove items) and forget to update the size enum, so your searches should never miss items or go out of bounds.